@ ScaleOut Software

Implementing Operational Intelligence
Using
In-Memory Computing

[in]-Memory

William L. Bain (wbain@scaleoutsoftware.com)
June 29, 2015

mailto:wbain@scaleoutsoftware.com

Agenda @ ScaleOut Software

* What is Operational Intelligence?
* Example: Tracking Set-Top Boxes

e Using an In-Memory Data Grid (IMDG) for Operational Intelligence
* Tracking and analyzing live data
* Comparison to Spark

* Implementing Ol Using Data-Parallel Computing in an IMDG

A Detailed Ol Example in Financial Services
* Code Samples in Java

* Implementing MapReduce on an IMDG
e Optimizing MapReduce for Ol

* Integrating Operational and Business Intelligence

© ScaleOut Software, Inc. 2

About ScaleOut Software (%) ScaleOut Software

Develops and markets In-Memory Data Grids, software middleware for:
* Scaling application performance and
* Providing operational intelligence using
* In-memory data storage and computing

Dr. William Bain, Founder & CEO

» Career focused on parallel computing — Bell Labs, Intel, Microsoft

e 3 prior start-ups, last acquired by Microsoft and product now ships as Network Load
Balancing in Windows Server

Ten years in the market; 400+ customers, 10,000+ servers

Sample customers:

ING :%D THOMSON REUTERS FIONDA ADELTA .- Mobile- TimeWarner
-~

Fu“ UMANA- monster a‘dl‘d\os” @ CP Health Net Ben

http://about-monster.com/
http://en.wikipedia.org/wiki/Image:HSN.png

ScaleOut Software’s Product Portfolio (%) ScaleOut Software

* ScaIeOUt Stateser\’er® (SOSS) ScaleOut StateServer In- Memory Data Gl’ld
* In-Memory Data Grid for Windows and Linux “ o - - - }
° Scales appllcation performance [& Service kSerwce kSerwce &Serwce
* Industry-leading performance and ease of use

e ScaleOut ComputeServer™ adds
e Operational intelligence for “live” data
 Comprehensive management tools

* ScaleOut hServer®
* Full Hadoop Map/Reduce engine (>40X faster*)
* Hadoop Map/Reduce on live, in-memory data

 ScaleOut GeoServer®
 WAN based data replication for DR
* Global data access and synchronization

*in benchmark testing

© ScaleOut Software, Inc. 4

In-Memory Computing Is Not New (/%) ScaleOut Software

e 1980’s: SIMD Systems, Caltech Cosmic Cube

Thinking Machines
Connection Machine 5

e 1990’s: Commercial Parallel Supercomputers

IBM
SP1

Intel
IPSC-2

What’s New: IMC on Commodity Hardware

e 1990’s — early 2000’s: HPC on Clusters

E)

e

e @ @ a =-lle

HP
Blade
Servers

Amazon EC2,
Windows Azure

@ ScaleOut Software

@ ScaleOut Software

Introductory Video:
What is Operational Intelligence

https://www.youtube.com/watch?v=H60FzdIEy-g&feature=youtu.be

Online Systems Need Operational Intelligence (7Y ScaleOut Software

Goal: Provide immediate (sub-second) feedback to a system handling live data.

A few example use cases requiring immediate feedback
within a live system:

* Ecommerce: personalized, real-time recommendations /.ﬁ/ ,.
* Healthcare: patient monitoring, predictive treatment DI A f @

Map/Reduce Analytics Engine) Alerts

* Equity trading: minimize risk during a trading day m

Fast, Memory-Based Storage)

* Reservations systems: identify issues, reroute, etc. e B
News sevce)11 servce)

\E Real-Time Analytics Engine Tra di?\g
* loT, Smart grids: optimize power distribution & detect e 7 \ Strategies

issues Portfolios

* Credit cards & wire transfers: detect fraud in real time

(e

© ScaleOut Software, Inc. 8

Operational vs Business Intelligence

Operational Intelligence _

Real-time
Live data sets
Gigabytes to terabytes
In-memory storage
Sub-second to seconds
Best uses:

* Tracking live data

* Immediately identifying trends
and capturing opportunities

* Providing immediate feedback

Big Data Analytics
Ol \ Bl
'\ Hadoop
J Spark
: Hana

@ ScaleOut Software

Business Intelligence

Batch

Static data sets
Petabytes

Disk storage
Minutes to hours
Best uses:

* Analyzing warehoused data

* Mining for long-term trends

© ScaleOut Software, Inc.

Example: Enhancing Cable TV Experience (79 ScaleOut Software

* Goals:
* Make real-time, personalized upsell offers
* Immediately respond to service issues
* Detect and manage network hot spots
* Track aggregate behavior to identify patterns, e.g.:
* Total instantaneous incoming event rate
* Most popular programs and # viewers by zip code

* Requirements:

* Track events from 10M set-top boxes with 25K events/sec (2.2B/day)

* Correlate, cleanse, and enrich events per rules (e.g. ignore fast channel switches, match
channels to programs)

©2011 Tammy Bruce presents LiveWire

* Be able to feed enriched events to recommendation engine within 5 seconds
* Immediately examine any set-top box (e.g., box status) & track aggregate statistics

© ScaleOut Software, Inc. 10

The Result: An Ol Platform

Based on a simulated workload for San Diego
metropolitan area:

e Continuously correlates and cleanses telemetry
from 10M simulated set-top boxes (from
synthetic load generator)

* Processes more than 30K events/second

* Enriches events with program information every
second

* Tracks aggregate statistics (e.g., top 10 programs
by zip code) every 10 seconds

@ ScaleOut Software

[Kabletown Demo - o IEEHE

Events/Sec =] Power Status =]

Dashboard Programs Cable Box Lookup

=] Top Shows by Zip =]

1877

1855
61815
61812
61807
61795
61794
61793
61793

Real-Time Dashboard

© ScaleOut Software, Inc. 11

Using an IMDG to Implement Ol (79 ScaleOut Software

* IMDG models and tracks the state of a “live” system.

* IMDG analyzes the system’s state in parallel and provides real-time feedback.

| = = = IMDG analyzes in-memory
{ el & VA data with integrated
Data-Parallel Analytics. CompUte engine'

-y

Real-World Entities

IMDG tracks live system’s
state with an in-memory,
object-oriented model.

IMDG enriches in-memory
model from disk-based,
historical data.

© ScaleOut Software, Inc. 12

Example: Tracking Set-TopBoxes (79 scaleOut Software

Each set-top box is represented as an object in the IMDG

Object holds raw & enriched event streams, viewer parameters, and statistics

IMDG captures incoming events by
updating objects

~ Real-Time Recc.

2 _ Feedback Engine
&
* IMDG uses data-parallel computation
to: i -

* immediately enrich box objects to
generate alerts to recommendation SetTop Boxes P
engine, and _ AN

e continuously collect and report > &

global statistics

Historical Data

© ScaleOut Software, Inc. 13

The Foundation: In-Memory Data Grids (79 scaleOut Software

* In-memory data grid (IMDG) provides scalable, hi av storage for live data:
* Designed to manage business logic state:
* Object-oriented collections by type
* Create/read/update/delete APIs for Java/C#/C++
* Parallel query by object properties
* Data shared by multiple clients
* Designed for transparent scalability and high availability:
e Automatic load-balancing across commodity servers

e Automatic data replication, failure detection, and
recovery

* IMDGs provide ideal platform for operational
intelligence: . Cluster of Grid Servers
e Easy to track live systems with large workloads
* Appropriate availability model for production deployments

© ScaleOut Software, Inc. 14

Comparing IMDGs to Spark (/%) ScaleOut Software

* On the surface, both are surprisingly similar:

* Both designed as scalable, in-memory computing platforms SPOFK
* Both implement data-parallel operators . G G G, g g S
* Both can handle streaming data Input Data Stream
Spark Execution Engine
* But there are key differences that <« RDD+ RDD '+ RDD «— [~ juiberon - |
impact use for operational intelligence: Output Data Stream immutable RDD
L Memory)
Best use Live, operational data Static data or batched streams
In-memory model Object-oriented collections Resilient distributed datasets
Focus of APIs CRUD, eventing, data-parallel Data-parallel operators for
computing analytics
High availability tradeoffs Data replication for fast Lineage for max performance
recovery

© ScaleOut Software, Inc. 15

Data-Parallel Computing on an IMDG (%) ScaleOut Software

* IMDGs provide powerful, cost-effective platform for data-parallel computing:

* Enable integrated computing with data storage:
* Take advantage of cluster’s commodity servers and cores.
* Avoid delays due to data motion (both to/from disk and across network).
* Leverage object-oriented model to minimize development effort:
* Easily define data-parallel tasks as class methods.
 Easily specify domain as object collection. Ana?;zl?am

Merge([keys])
Eval(<inputs>)

<analyze>;
<output
key/value>;

* Example: “Parallel Method Invocation” (PMI):
* Object-oriented version of standard HPC model
* Runs class methods in parallel across cluster. Combine Results
» Selects objects using parallel query of obj. collection. (Merge)

* Serves as a platform for implementing MapReduce
and other data-parallel operators

© ScaleOut Software, Inc. 16

PMI Example: Ol in Financial Services (7Y ScaleOut Software

* Goal: track market price fluctuations for a hedge fund and keep portfolios in balance.

* How:

» Keep portfolios of stocks (long and short positions)
in object collection within IMDG.

* Collect market price changes in
one-second snapshots.

Market
* Define a method which applies a w
snapshot to a portfolio and optionally
generates an alert to rebalance.

e Perform repeated parallel method invocations
on a selected (i.e., queried) set of portfolios.

 Combine alerts in parallel using a second user-defined
method.

* Report alerts to Ul every second for fund manager.

Strategy: High Tech
Target=$80M
Strategy Rules

© ScaleOut Software, Inc. 17

Defining the Dataset

e Simplified example of a portfolio class (Java):
* Note: some properties are made query-able.

* Note: the evalPositions method analyzes the portfolio for a market snapshot.

@ ScaleOut Software

Strategy: High Tech
Target=$80 M
Strategy Rules
Position MSFT

10K shares
Long
Position AAPL

public class Portfolio {
private long id;
private Set<Stock> longPositions;
private Set<Stock> shortPositions;

@SossIndexAttribute

private double totalValue;

private Region region;

private boolean alerted; // alert for trading
@SossIndexAttribute // query-able property

public double getTotalValue () {..}

// query-able property

public Region getRegion() {..}

public Set<Long> evalPositions (MarketSnapshot ms) {..};

20k shares
Short

© ScaleOut Software, Inc.

18

Defining the Parallel Methods (%) ScaleOut Software

* Implement PMI interface to define methods for analyzing each object and for merging
the results:

public class PortfolioAnalysis implements
Invokable<Portfolio, MarketSnapshot, Set<Long>>
{
public Set<Long> eval (Portfolio p, MarketSnapshot ms)
throws InvokeException {

// update portfolio and return id if alerted:
return p.evalPositions (ms) ;

}

public Set<Long> merge (Set<Long> setl, Set<Long> set2)
throws InvokeException {
setl.addAll (set2) ;
return setl; // merged set of alerted portfolio ids

b}

© ScaleOut Software, Inc. 19

Running the Analysis (%) ScaleOut Software

e PMI can be run from a remote workstation.

IMDG ships code and libraries
to cluster of servers: Analyze

Integrated Compute Engine

Invoke PMI
L> Java Analytics Engine

e Execution environment can be malyae hedging
strategies>; . .
pr‘e_staged for‘ fast Sta rtu p. <generate result> \ NET Ana|yt|CS Englne
. . L. Receive ;—----------*
* [n-line execution minimizes results | Fast Memory-Based Storage)
scheduling time. ’E.d_ TR | @& j
Results
B Service . Service . Service

<result 2> [T p— — p— — p— p— f—

<resit3> In-Memory Data Grid

e Avoids batch scheduling delays.

PMI automatically runs in parallel Remote
. Workstation
across all grid servers:

* Uses software multicast to accelerate startup.
* Passes market snapshot parameter to all servers.
* Uses all servers and cores to maximize throughput.

© ScaleOut Software, Inc. 20

Spawning the Compute Engine (%) ScaleOut Software

 First obtain a reference to the IMDG’s object collection of portfolios:

NamedCache pset = CacheFactory.getCache (“portfolios") ;

* Create an “invocation grid,” a re-usable compute engine for the application:

e Spawns a JVM on all grid servers and connects them to the in-memory data grid.
» Stages the application code on all JVMs.
* Associates the invocation grid with an object collection.

InvocationGrid grid = new InvocationGridBuilder ("grid")
.addClass (DependencyClass.class)
.addJar (" /path/to/dependency. jar")
.setJVMParameters (" -Xmx2m")
.load() ;

pset.setlInvocationGrid(grid) ;

© ScaleOut Software, Inc. 21

Invoking the PMI (%) ScaleOut Software

* Run the PMI on a queried set of objects within the collection:
* Multicasts the invocation and parameters to all JVMs.

* Runs the data-parallel computation.
* Merges the results and returns a final result to the point of call.

InvokeResult alertedPortolios = pset.invoke (
PortfolioAnalysis.class,
Portfolio.class,
and (greaterThan (“totalvalue”, 1000000), // query spec
equals (“region”, Region.US)),
marketSnapshot, // parameters

) ;
System.out.println ("The alerted portfolios are" +
alertedPortfolios.getResult()) ;

© ScaleOut Software, Inc. 22

Execution Steps

* Eval phase: each server queries local
objects and runs eval and merge methods:

* Note: Accessing local data avoids

networking overhead.

* Completes with one result object per

Server.

Analyze

(cded)

X 4 =
H

Parallel Method
Execution Engine

-} Query Engine

LTS

In- Memory Object Store

sy|nsay pabiapy

N Grid Service Jg

@ ScaleOut Software

* Merge phase: all servers perform
distributed merge to create final result:

* Merge runs in parallel to minimize
completion time.

e Returns final result object to client.

N

X 7

4 R

‘> e |

X 7

Parallel Method
Execution Engine

Parallel Method
Execution Engine

Parallel Method
Execution Engine
4

4

Q A 4

Merged Results

Merged Results

© ScaleOut Software, Inc. 23

Importance of Avoiding Data Motion (%) ScaleOut Software

* Local data access

enables linear] PMI vs. Random Access Throughput Comparison
throughput scaling. 2mb time series objects
 Network access creates
a bottleneck that limits O s o
throughput. 500 -
£
9 400 -
”
s 300 -
=
S 200 |
2
© 400 -
0 : : : : : : :
Number of Nodes 4 8 12 16 20 24 28 32
Number of Objects 512 1024 1536 2048 2560 3072 3584 4096

© ScaleOut Software, Inc. 24

Outputting Continuous Alerts to the Ul (/%) ScaleOut Software

* PMI runs every second; it completes in 350 msec. and immediately refreshes Ul.
Market

AAPL 452 AAPL 461 % Strategy Alerts Dashboard e B
MSFT 28.2 MSFT 28.3 Strategy List (first 100 items out of 2000):
Control Panel
GM 28-6 GM 28-2 Strategy Name N ontrol Fane!
F e e d & Strategy 000 Stop monitoring | Refresh dataevery |1 % second(s) Alert Threshold (%): 5
. A Strategy 001
& Strategy 002
P rl ce S na ps h Ots o Strategi 003 Positions Evaluated: 40,000 Throughput (pos/sec): 40,000 Number of Alerted Strategies: 16
@ Strategy 004 = Strategy 011 details:
9 Strategy 005
: ;St:;tggi 005 posios Ticker Price Position Aﬁégltaién A\'\l:\:ci:teilt‘m Exposure e Alert
e Ul alerts trader t tfol : 0
alerts trader to portrolios 9 Stategy 007 (%) % -
ng:ra:egy gg: Core AFGRF $59.53 703 10.00% 6.65% $41849.94 135% [
L] —
msirategy Core ABTTO $48.20 976 10.00% 0.75% $47,130.14 5% [
a n e e re a a n C I n g . o3 Statogy 014 Core AMRWF $28.13 1,839 10.00% 10.70% $51,733.06 70% [l
A Strategy 011 - B Ve R 2139 Ve -
& Strategy 012 Core ADNY $38.47 1,139 10.00% 905% $4375218 o5%]
° . = Strategy 013 Core AEBXX $37.04 1,166 10.00% 893% $4318957 107% [
U I a OWS t ra e r to exa l I | I n e ' Strategy 014 Care ACBVX $4278 976 10.00% 863% $4175249 -1.37%]
. . . '3:3”‘1993’ glg v ALAN $28.93 2517 1000% 1506% $723810.18 506% [V]
ortrolio etalls an etermine mslraegy Core AFYCX $103.80 498 1000% 10.60% $51693.87 69% [
3 Strategy 017 —
 Strategy 013 Core APKT $40.90 938 10.00% 7.93% $38360.30 20% [
. f' . t . t h t t & Strategy 019 Core ACTNNX $30.07 1,708 10.00% 1060% $51,25857 s0% [
S p e C I I C p O S I I O n S a a re O U @ Strategy 020 Hedge ANSXF $17.74 320 10.00% 1034% $567529 3% [
¥ Strategy 021 Hedge ABSYX $48.23 101 10.00% 888% $4,871.19 -1.12%]
Of b a | a N C e D:z:rategy g§§ Hedge APF $88.55 66 1000% 1065% $5844.40 &5% [
* mstraeay Hedge ADLI $51.47 103 10.00% 966% $5301.17 %[O
3 Strategy 024 —
5 Strategy 025 Hedge AAMNEX $41.88 147 10.00% 1122% $6,15567 122% [
° Re S u It ° i n - m e m o r co m u ti n Strategy 026 Hedge ACBGX $63.34 74 10.00% 654% $4,68687 146% [
. y p g 19 Strategy 027 Hedge ANQIX $15.67 389 10.00% 1% $6,096.98 111% [
. ° B Strategy 028 Hedge AMMCF $4.61 1,362 10.00% 1145% $6,281.33 1.45%]
d e I ivers opera t iona I & Strategy 029 Hedge AHLPR $3.69 1362 10.00% 9.15% $5022.74 es% [
o Strategy 030 Hedge AGREX $16.28 303 10.00% 809% $493322 1.01%]
@ Strategy 031 - 9 i 0% 9% 94,953 e L

intelligence.

© ScaleOut Software, Inc. 25

@ ScaleOut Software

Demonstration Video:
Comparison of PMI to Apache Hadoop

https://www.youtube.com/watch?v=8JTsqp_-Gnw

PMI Scales for Large In-Memory Datasets (7Y ScaleOut Software

* Measured a similar financial services application (back testing stock trading strategies on
stock histories)

* Hosted IMDG in Amazon EC2 using 75 servers holding 1 TB of stock history data in
memory

Analysis Throughput
500 -

* IMDG handled a continuous
stream of updates (1.1 GB/s)

e Results: analyzed 1 TBin
4.1 seconds (250 GB/s).

* Observed linear scaling as
dataset and update rate grew.

450

400 =—=No updates

==|Jpdaterate 10 MB/s per server

350 1 Updaterate 15 MB/s per server

300 t
Aggregate data update rate (75 servers):

750 MB per second
1.1 GB per second

250 -

200

150 -

Throughput {gigabytes/second)

100 -
Complete map/reduce on 1 TB data set:

2.2 seconds

50 -+ 3.4 seconds
4.1 seconds
0 T T T T T T 1
Grid Servers 10 20 30 40 50 60 70 80
Dataset Size 224 GB 1TB

© ScaleOut Software, Inc. 27

Using PMI to Implement MapReduce for Ol) ScaleOut Software

 PMI serves as foundational platform for MapReduce and other parallel operators.

* Implement MapReduce with two PMI phases: Input
* Runs standard Hadoop MapReduce applications.
e Data can be input from either the IMDG or an /¢
external data source. s

* Works with any input/output format.

* IMDG uses PMI phases to invoke the mappers Store
and reducers. intermediate

data set
* Eliminates batch scheduling overhead.
* Intermediate results are stored within the IMDG.
. Execute
* Minimizes data motion in shuffle phase. reducers
* Allows optional sorting.

* Note: output of a single reducer/combiner
optionally can be globally merged. Output

results

Shuffle

Grid
Service

- Grid
Service

. Grid
Service

Sort

© ScaleOut Software, Inc. 28

MapReduce for Ol Requires New Data Model &) scaleout Software

* IMDGs historically implement a feature-rich data model:
 Efficiently manages large objects (KBs-MBs).
* Supports object timeouts, locking, query by {

properties, dependency relationships, etc.

Mapper‘l] {Mappem] e Mappern-1] {MappernJ}

 MapReduce typically targets very large collections

of small key/value pairs: pecord) Recrd pecord) Record
ecor ecor ecor ecor
y p * Reader Reader Reader Reader

* Does not require rich object semantics.
* Does require efficient storage (minimum metadata)

and highly pipelined access. (éﬂ (é;ﬂ q‘gijDL Q(;IO
* Solution: a new IMDG data model for MapReduce: 2 & & &
 Uses standard Java named map APIs for access. 2R lﬁ”k T L_ﬁ_;f“ [

* MapReduce uses standard input/output formats. N srid Service)

 Stores data in chunks and pipelines to/from engine.
* Automatically defines splits for mappers and holds shuffled data for reducers.

© ScaleOut Software, Inc. 29

Optimizing MapReduce for Ol: simpleMR

* Integrate in-memory named map with MapReduce to minimize execution time.
* Use new API (simpleMR in Java, C#) to simplify apps and remove Hadoop dependencies.

@ ScaleOut Software

public class Mapper : IMapper<int,

{
void IMapper<int, string,

string value, IContext<string, int> context)

{

H}

new NamedMap<int, string>("Input Map");

inputMap =
new NamedMap<string, int>("Output Map") ;

outputMap =

inputMap.RunMapReduce<string, int,

string, string, int>

string, int>.Map(int key,

context.Emit (Encoding.ASCII.GetString(...), 1)

string, int>(outputMap,
new Mapper (), new Combiner (), new Reducer(), ...);

© ScaleOut Software, Inc.

30

Integrating Ol and Bl in the Data Warehouse @) ScaleOut Software

Data
Web Site Real-Time Warehouse

* In-memory data grids can add ',
value to a Bl platform, e.g.: AN

 Transform live data and store in "’ 7 JJ EEOIdI» ETL mmp P
HDFS for analysis. '~

* Provide immediate feedback to
live system pending deep analysis.

ETL Example
Online Shoppers

-hadaup

* Using YARN, an IMDG can be directly g R

integrated into a Bl cluster: hS &

* The IMDG holds fast-changing data.

* YARN directs MapReduce jobs to il el WAEMORY APREDUCE
the IMDG. i

* The IMDG can output results to _ REALTME oy
HDFS.

© ScaleOut Software, Inc. 31

Recap: In-Memory Computing for Ol (™) ScaleOut Software

* Online systems need operational intelligence on
“live” data for immediate feedback.

* Creates important new business opportunities.

In=Mempory Data Grid
. .

e Operational intelligence can be implemented

using :c,tandard data-parallel computing 000 * = 000
techni qgues. il i Analytics Engine e
* In-memory data grids provide an excellent e L L
platform for operational intelligence: & bl J
* Model and track the state of a “live” system. - T i /
* Implement high availability.

Disk-Based Persistent Store

Offer fast, data-parallel computation for

immediate feedback. § § § -
HEEE

Provide a straightforward, object-oriented
development model.

© ScaleOut Software, Inc. 32

www.scaleoutsoftware.com

