
Implementing Operational Intelligence
Using

In-Memory Computing

William L. Bain (wbain@scaleoutsoftware.com)

June 29, 2015

mailto:wbain@scaleoutsoftware.com

Agenda

• What is Operational Intelligence?

• Example: Tracking Set-Top Boxes

• Using an In-Memory Data Grid (IMDG) for Operational Intelligence
• Tracking and analyzing live data

• Comparison to Spark

• Implementing OI Using Data-Parallel Computing in an IMDG

• A Detailed OI Example in Financial Services
• Code Samples in Java

• Implementing MapReduce on an IMDG

• Optimizing MapReduce for OI

• Integrating Operational and Business Intelligence

© ScaleOut Software, Inc. 2

• Develops and markets In-Memory Data Grids, software middleware for:

• Scaling application performance and

• Providing operational intelligence using

• In-memory data storage and computing

• Dr. William Bain, Founder & CEO

• Career focused on parallel computing – Bell Labs, Intel, Microsoft

• 3 prior start-ups, last acquired by Microsoft and product now ships as Network Load
Balancing in Windows Server

• Ten years in the market; 400+ customers, 10,000+ servers

• Sample customers:

About ScaleOut Software

http://about-monster.com/
http://en.wikipedia.org/wiki/Image:HSN.png

ScaleOut Software’s Product Portfolio

• ScaleOut StateServer® (SOSS)
• In-Memory Data Grid for Windows and Linux
• Scales application performance
• Industry-leading performance and ease of use

• ScaleOut ComputeServer™ adds
• Operational intelligence for “live” data
• Comprehensive management tools

• ScaleOut hServer®
• Full Hadoop Map/Reduce engine (>40X faster*)
• Hadoop Map/Reduce on live, in-memory data

• ScaleOut GeoServer®
• WAN based data replication for DR
• Global data access and synchronization

© ScaleOut Software, Inc. 4

ScaleOut StateServer In-Memory Data Grid

Grid

Service

Grid

Service

Grid

Service

Grid

Service

*in benchmark testing

In-Memory Computing Is Not New

• 1980’s: SIMD Systems, Caltech Cosmic Cube

Thinking Machines
Connection Machine 5

• 1990’s: Commercial Parallel Supercomputers

Intel
IPSC-2

IBM
SP1

What’s New: IMC on Commodity Hardware

• 1990’s – early 2000’s: HPC on Clusters

• Since ~2005: Public Clouds

HP
Blade
Servers

Amazon EC2,
Windows Azure

Introductory Video:
What is Operational Intelligence

https://www.youtube.com/watch?v=H6OFzdIEy-g&feature=youtu.be

Online Systems Need Operational Intelligence

Goal: Provide immediate (sub-second) feedback to a system handling live data.

© ScaleOut Software, Inc. 8

A few example use cases requiring immediate feedback
within a live system:

• Ecommerce: personalized, real-time recommendations

• Healthcare: patient monitoring, predictive treatment

• Equity trading: minimize risk during a trading day

• Reservations systems: identify issues, reroute, etc.

• Credit cards & wire transfers: detect fraud in real time

• IoT, Smart grids: optimize power distribution & detect
issues

Operational vs Business Intelligence

Batch

Static data sets

Petabytes

Disk storage

Minutes to hours

Best uses:

• Analyzing warehoused data

• Mining for long-term trends

Real-time

Live data sets

Gigabytes to terabytes

In-memory storage

Sub-second to seconds

Best uses:

• Tracking live data

• Immediately identifying trends
and capturing opportunities

• Providing immediate feedback

Operational Intelligence

Business Intelligence

Big Data Analytics

IMDGs
CEP

Storm

Hadoop
Spark
Hana

OI BI

© ScaleOut Software, Inc. 9

Example: Enhancing Cable TV Experience

• Goals:
• Make real-time, personalized upsell offers

• Immediately respond to service issues

• Detect and manage network hot spots

• Track aggregate behavior to identify patterns, e.g.:

• Total instantaneous incoming event rate

• Most popular programs and # viewers by zip code

• Requirements:
• Track events from 10M set-top boxes with 25K events/sec (2.2B/day)

• Correlate, cleanse, and enrich events per rules (e.g. ignore fast channel switches, match
channels to programs)

• Be able to feed enriched events to recommendation engine within 5 seconds

• Immediately examine any set-top box (e.g., box status) & track aggregate statistics

© ScaleOut Software, Inc. 10

©2011 Tammy Bruce presents LiveWire

Based on a simulated workload for San Diego
metropolitan area:

• Continuously correlates and cleanses telemetry
from 10M simulated set-top boxes (from
synthetic load generator)

• Processes more than 30K events/second

• Enriches events with program information every
second

• Tracks aggregate statistics (e.g., top 10 programs
by zip code) every 10 seconds

The Result: An OI Platform

Real-Time Dashboard

© ScaleOut Software, Inc. 11

Using an IMDG to Implement OI

• IMDG models and tracks the state of a “live” system.

• IMDG analyzes the system’s state in parallel and provides real-time feedback.

© ScaleOut Software, Inc. 12

IMDG analyzes in-memory
data with integrated
compute engine.

IMDG tracks live system’s
state with an in-memory,
object-oriented model.

IMDG enriches in-memory
model from disk-based,
historical data.

• Each set-top box is represented as an object in the IMDG

• Object holds raw & enriched event streams, viewer parameters, and statistics

Example: Tracking Set-TopBoxes

© ScaleOut Software, Inc. 13

• IMDG captures incoming events by
updating objects

• IMDG uses data-parallel computation
to:
• immediately enrich box objects to

generate alerts to recommendation
engine, and

• continuously collect and report
global statistics

The Foundation: In-Memory Data Grids

• In-memory data grid (IMDG) provides scalable, hi av storage for live data:
• Designed to manage business logic state:

• Object-oriented collections by type

• Create/read/update/delete APIs for Java/C#/C++

• Parallel query by object properties

• Data shared by multiple clients

• Designed for transparent scalability and high availability:
• Automatic load-balancing across commodity servers

• Automatic data replication, failure detection, and
recovery

• IMDGs provide ideal platform for operational
intelligence:
• Easy to track live systems with large workloads

• Appropriate availability model for production deployments

© ScaleOut Software, Inc. 14

Comparing IMDGs to Spark

• On the surface, both are surprisingly similar:
• Both designed as scalable, in-memory computing platforms

• Both implement data-parallel operators

• Both can handle streaming data

• But there are key differences that
impact use for operational intelligence:

© ScaleOut Software, Inc. 15

IMDGs Spark

Best use Live, operational data Static data or batched streams

In-memory model Object-oriented collections Resilient distributed datasets

Focus of APIs CRUD, eventing, data-parallel
computing

Data-parallel operators for
analytics

High availability tradeoffs Data replication for fast
recovery

Lineage for max performance

Data-Parallel Computing on an IMDG

• IMDGs provide powerful, cost-effective platform for data-parallel computing:
• Enable integrated computing with data storage:

• Take advantage of cluster’s commodity servers and cores.

• Avoid delays due to data motion (both to/from disk and across network).

• Leverage object-oriented model to minimize development effort:
• Easily define data-parallel tasks as class methods.

• Easily specify domain as object collection.

• Example: “Parallel Method Invocation” (PMI):
• Object-oriented version of standard HPC model

• Runs class methods in parallel across cluster.

• Selects objects using parallel query of obj. collection.

• Serves as a platform for implementing MapReduce
and other data-parallel operators

© ScaleOut Software, Inc. 16

Analyze Data
(Eval)

Combine Results
(Merge)

PMI Example: OI in Financial Services

• Goal: track market price fluctuations for a hedge fund and keep portfolios in balance.

• How:
• Keep portfolios of stocks (long and short positions)

in object collection within IMDG.

• Collect market price changes in
one-second snapshots.

• Define a method which applies a
snapshot to a portfolio and optionally
generates an alert to rebalance.

• Perform repeated parallel method invocations
on a selected (i.e., queried) set of portfolios.

• Combine alerts in parallel using a second user-defined
method.

• Report alerts to UI every second for fund manager.

© ScaleOut Software, Inc. 17

Defining the Dataset

• Simplified example of a portfolio class (Java):
• Note: some properties are made query-able.

• Note: the evalPositions method analyzes the portfolio for a market snapshot.

 © ScaleOut Software, Inc. 18

 public class Portfolio {
 private long id;

 private Set<Stock> longPositions;

 private Set<Stock> shortPositions;

 private double totalValue;

 private Region region;

 private boolean alerted; // alert for trading

 @SossIndexAttribute // query-able property

 public double getTotalValue() {…}

 @SossIndexAttribute // query-able property

 public Region getRegion() {…}

 public Set<Long> evalPositions(MarketSnapshot ms) {…};

}

Defining the Parallel Methods

• Implement PMI interface to define methods for analyzing each object and for merging
the results:

© ScaleOut Software, Inc. 19

public class PortfolioAnalysis implements

 Invokable<Portfolio, MarketSnapshot, Set<Long>>

{

 public Set<Long> eval(Portfolio p, MarketSnapshot ms)

 throws InvokeException {

 // update portfolio and return id if alerted:

 return p.evalPositions(ms);

 }

 public Set<Long> merge(Set<Long> set1, Set<Long> set2)

 throws InvokeException {

 set1.addAll(set2);

 return set1; // merged set of alerted portfolio ids

 }}

Running the Analysis

• PMI can be run from a remote workstation.

• IMDG ships code and libraries
 to cluster of servers:
• Execution environment can be

pre-staged for fast startup.

• In-line execution minimizes
scheduling time.
• Avoids batch scheduling delays.

• PMI automatically runs in parallel
across all grid servers:
• Uses software multicast to accelerate startup.

• Passes market snapshot parameter to all servers.

• Uses all servers and cores to maximize throughput.

© ScaleOut Software, Inc. 20

Spawning the Compute Engine

• First obtain a reference to the IMDG’s object collection of portfolios:

• Create an “invocation grid,” a re-usable compute engine for the application:
• Spawns a JVM on all grid servers and connects them to the in-memory data grid.

• Stages the application code on all JVMs.

• Associates the invocation grid with an object collection.

© ScaleOut Software, Inc. 21

InvocationGrid grid = new InvocationGridBuilder("grid")

 .addClass(DependencyClass.class)

 .addJar("/path/to/dependency.jar")

 .setJVMParameters("-Xmx2m")

 .load();

pset.setInvocationGrid(grid);

NamedCache pset = CacheFactory.getCache(“portfolios");

Invoking the PMI

• Run the PMI on a queried set of objects within the collection:
• Multicasts the invocation and parameters to all JVMs.

• Runs the data-parallel computation.

• Merges the results and returns a final result to the point of call.

© ScaleOut Software, Inc. 22

InvokeResult alertedPortolios = pset.invoke(

 PortfolioAnalysis.class,

 Portfolio.class,

 and(greaterThan(“totalValue”, 1000000), // query spec

 equals(“region”, Region.US)),

 marketSnapshot, // parameters

 ...

);

System.out.println("The alerted portfolios are" +

 alertedPortfolios.getResult());

Execution Steps

• Eval phase: each server queries local
objects and runs eval and merge methods:
• Note: Accessing local data avoids

networking overhead.

• Completes with one result object per
server.

© ScaleOut Software, Inc. 23

• Merge phase: all servers perform
distributed merge to create final result:
• Merge runs in parallel to minimize

completion time.

• Returns final result object to client.

Importance of Avoiding Data Motion

• Local data access
enables linear
throughput scaling.

• Network access creates
a bottleneck that limits
throughput.

© ScaleOut Software, Inc. 24

Outputting Continuous Alerts to the UI

• PMI runs every second; it completes in 350 msec. and immediately refreshes UI.

• UI alerts trader to portfolios
that need rebalancing.

• UI allows trader to examine
portfolio details and determine
specific positions that are out
of balance.

• Result: in-memory computing
delivers operational
intelligence.

© ScaleOut Software, Inc. 25

Demonstration Video:
Comparison of PMI to Apache Hadoop

https://www.youtube.com/watch?v=8JTsqp_-Gnw

PMI Scales for Large In-Memory Datasets

• Measured a similar financial services application (back testing stock trading strategies on
stock histories)

• Hosted IMDG in Amazon EC2 using 75 servers holding 1 TB of stock history data in
memory

• IMDG handled a continuous
stream of updates (1.1 GB/s)

• Results: analyzed 1 TB in
4.1 seconds (250 GB/s).

• Observed linear scaling as
dataset and update rate grew.

© ScaleOut Software, Inc. 27

Using PMI to Implement MapReduce for OI

• PMI serves as foundational platform for MapReduce and other parallel operators.

• Implement MapReduce with two PMI phases:
• Runs standard Hadoop MapReduce applications.

• Data can be input from either the IMDG or an
external data source.
• Works with any input/output format.

• IMDG uses PMI phases to invoke the mappers
and reducers.
• Eliminates batch scheduling overhead.

• Intermediate results are stored within the IMDG.
• Minimizes data motion in shuffle phase.

• Allows optional sorting.

• Note: output of a single reducer/combiner
optionally can be globally merged.

© ScaleOut Software, Inc. 28

MapReduce for OI Requires New Data Model

• IMDGs historically implement a feature-rich data model:
• Efficiently manages large objects (KBs-MBs).

• Supports object timeouts, locking, query by
properties, dependency relationships, etc.

• MapReduce typically targets very large collections
of small key/value pairs:
• Does not require rich object semantics.

• Does require efficient storage (minimum metadata)
and highly pipelined access.

• Solution: a new IMDG data model for MapReduce:
• Uses standard Java named map APIs for access.

• MapReduce uses standard input/output formats.

• Stores data in chunks and pipelines to/from engine.

• Automatically defines splits for mappers and holds shuffled data for reducers.

© ScaleOut Software, Inc. 29

Optimizing MapReduce for OI: simpleMR

• Integrate in-memory named map with MapReduce to minimize execution time.

• Use new API (simpleMR in Java, C#) to simplify apps and remove Hadoop dependencies.

© ScaleOut Software, Inc. 30

public class Mapper : IMapper<int, string, string, int>

{

 void IMapper<int, string, string, int>.Map(int key,

 string value, IContext<string, int> context)

 {

 ...

 context.Emit(Encoding.ASCII.GetString(...), 1);

}}

inputMap = new NamedMap<int, string>("Input_Map");

outputMap = new NamedMap<string, int>("Output_Map");

inputMap.RunMapReduce<string, int, string, int>(outputMap,

 new Mapper(), new Combiner(), new Reducer(), ...);

Integrating OI and BI in the Data Warehouse

• In-memory data grids can add
value to a BI platform, e.g.:
• Transform live data and store in

HDFS for analysis.

• Provide immediate feedback to
live system pending deep analysis.

• Using YARN, an IMDG can be directly
integrated into a BI cluster:
• The IMDG holds fast-changing data.

• YARN directs MapReduce jobs to
the IMDG.

• The IMDG can output results to
HDFS.

© ScaleOut Software, Inc. 31

ETL Example

Recap: In-Memory Computing for OI

• Online systems need operational intelligence on
“live” data for immediate feedback.
• Creates important new business opportunities.

• Operational intelligence can be implemented
using standard data-parallel computing
techniques.

• In-memory data grids provide an excellent
platform for operational intelligence:
• Model and track the state of a “live” system.

• Implement high availability.

• Offer fast, data-parallel computation for
immediate feedback.

• Provide a straightforward, object-oriented
development model.

© ScaleOut Software, Inc. 32

www.scaleoutsoftware.com

