Inconnon grann **SELF-LEARNING** CACHES

IRFAN AHMAD CACHEPHYSICS

Copyright 2017 CachePhysics.

LE SA

C

CONVIN

ABOUT

CachePhysics

Irfan Ahmad CachePhysics Cofounder CloudPhysics Cofounder VMware (Kernel, Resource Management), Transmeta, 30+ Patents Pink Tie from University of Waterloo @virtualirfan

Data Path Monitoring and Modeling Software Real-time Predictive Modeling of Data Access Patterns Increasing Performance & Cost Efficiency of Existing Caches Powering Next-Generation Self-Learning Caches

TYPICAL AUTOMATION JOURNEY

Automation: DONE

Knobs and Levers: LOTS

Photo credit: Opservices.com

POST-AUTOMATION WORLD CHALLENGES

Which Knobs to Turn and by How Much?

POST-AUTOMATION WORLD CHALLENGES

changing daily. Providing QOS has become hard

NEW TWIST: DATA PATH GETTING MORE COMPLEX

The problems are

gettingmuch

WORSE with increasing hardware

complexity

What's the Path Forward?

How about a Self-Learning Data Infrastructure?

STATIC DATA INFRASTRUCTURE

Static Data Infrastructure Vulnerable to:

- Thrashing, Scan pollution
- Gross unfairness, Interference
- Unpredictability

In-Memory Computing 2017 $\Rightarrow Overprovisioning \\\Rightarrow Lack of Control$

CACHES ARE CRITICAL TO EVERY APPLICATION

SUMMIT

Intelligent Cache Management is Non-Existent

- Is this performance good?
- Can performance be improved?
- How much Cache for App A vs B vs ...?
- What happens if I add / remove DRAM?
- How much DRAM versus Flash?
- How to achieve 99% ile latency of $X \mu s$? ٠
- What if I add / remove workloads?
- Is there cache thrashing / pollution? •
- What if I change cache parameters?

MODELING PERFORMANCE IN REAL-TIME

Cache PerformanceHit Ratio**65%**Cache Size**128GB**

UNDERSTANDING CACHE MODELS

Models help decide useful increments of change.

In this example, no benefit despite an 8x increase in budget.

UNDERSTANDING CACHE MODELS

Often, most operating points are highly inefficient.

This cache is operating at the lowest ROI point; equivalent performance to 1/8 the budget.

Arrows represent the efficient operating points.

UNDERSTANDING MODEL-BASED ADAPTATION

Single Workload. Prediction of performance under different policies.

An self-learning data infrastructure would always pick the optimal.

SAMPLE MODELS FROM PRODUCTION WORKLOADS

ACHIEVING LATENCY TARGETS

ACHIEVEING MULTI-TIER SIZING

* Can model network bandwidth as a function of cache misses from each tier

ACHIEVING NEW LEVELS PERFORMANCE

- Thrash remediation algorithm
- Optimal curve bending cache-unfriendly workloads

TOWARDS A SELF-OPTIMIZING DATA PATH

irfan@cachephysics.com 650-417-8559

@virtualirfan

