
HYBRID

TRANSACTION/ANALYTICAL

PROCESSING

COLIN MACNAUGHTON

 Headquartered in Silicon Valley

 Creators of the X Platform™- Memory Oriented

Application Platform

 Passionate about high performance computing

 Running in production at Fortune 100-300

WHO IS NEEVE RESEARCH?

AGENDA

▪ What is HTAP … What are the Challenges?

▪ How The X Platform tackles HTAP

▪ HTAP Use cases

WHAT IS HTAP?

Hybrid transaction/analytical processing will empower application leaders to

innovate via greater situation awareness and improved business agility.

This will entail an upheaval in the established architectures, technologies and

skills driven by use of in-memory computing technologies as enablers.

HTAP allows businesses to react to “business moments” …

transient opportunities and risks that exist in the now.

- Gartner 2014

TYPES OF APPLICATIONS

 Credit Card Processors

 Personalization Engines

 Ad Exchanges

 IoT Event Processors

 Financial Trading Risk Engines

 …

WHAT DO WE NEED?

 Performance

 100s of thousands of transactions a second

 Microseconds to low milliseconds processing times

 Scale

 10s of millions of records in application’s working set

 Scale linearly with the business

 Reliability / Availability

 Zero message or data loss across network, process, machine or data center failures

 Agility / Ease

 Write pure Java business logic without concern for above, ability to evolve applications organically

 Intelligence

 Ability to analyze working state and absorb streaming intelligence quickly to react to business
opportunity and risk .

Non Functional Needs

Business Needs

A SIMPLE ARCHITECTURE (UNTENABLE)

Transaction Processing Apps (OLTP) Analytical Processing (OLAP)

Application

Analytics

Analytics

Relational DB

Enterprise Data

Requirements:

• Scale

• Performance

• Reliability

• Agility

• Intelligence

Requirements:

• Visualization

• Capture

• Aggregation/

Transformation

• Timely BI FeedbackChoke Point:

Long running OLAP queries

Starve OLTP Business Transactions

Update Intensive,

Short Transactions
Read Intensive,

Long Transactions

…Request Stream

THE TRADITIONAL ARCHITECTURE (ETL)

Transaction Processing (OLTP) Analytical Processing (OLAP)

DATA

WAREHOUSE

Data Integration

(Extract, Transform, Load)

Slow

Analytical Feedback in

Hours or even Days ->

“Business Moment” Missed

• ETL allows OLAP without

Compromizing OLTP

• Data Duplication

• Slow (batch processing)

• Faster: Anlyticals Decoupled)

• Difficult to Scale (Update

Contention)

• Complex

Analytics

Analytics

…
Application Operational

Database

Request Stream

ETL FAILINGS

 Scalability

 Update Contention in Operational Database impedes scale

 Performance

 Database read/write round trip latency impedes ability to stream.

 Extract/Transform/Load is slow to avoid impacting operational data

-> “business moment” is long gone by time analytics yield results.

 Agility
 Data duplication due to mismatch between operational state and data warehouse.

 ETL process is complex leading to fear about changing data warehouse schema and

hampers innovation in transactional business logic.

ODSScale?

ODS

Throughput?

ODS

Complexity?

WARE

HOUSE

WARE

HOUSE

ENTER HTAP DATABASES

HTAP DATABASES

Use In-Memory Technologies

and Multi-Version Concurrency Control to allow

transaction processing and analytical Loads

on the same database

ENTER HTAP DATABASES

Transaction Processing (OLTP) Analytical Processing (OLAP)

HTAP

DB

Enterprise State

Much more timely analytical

Feedback
✓ Eliminate Data Duplication

✓ Reduced Complexity

Adoption Challenges?

-who owns the schema?

Analytics

Analytics

Application

…

• Scaling Challenges: better, but

still update contention

• Mapping of objects to shared

schema impedes agility

Leverages In Memory State

(faster updates/read)

+

MVCC -> concurrent OLTP/OLAP

Request Stream

VoltDB, NuoDB, MemSQL…

SCALING IT OUT – MICROSERVICES

MICROSERVICES

Decompose Applications Into Individual Services that

Perform Business Functions around State Private to that Service

With Inter-Service Collaborate Purely Over Messaging.

Applications Can Then Scale By Partitioning of State

SCALING OUT – STRIPED DATA + SMART ROUTING

Transaction Processing (OLTP) Analytical Processing (OLAP)

HTAP

DB

Enterprise State

Analytics

Analytics

Service A

Partition 1

…

Request Traffic

HTAP

DB

Service A

Partition 2

Smart Routing

(messaging traffic partitioned to align with data partitions)

Data

“Striped”

Analytics Results

Streamed Back to

Transaction Processors

HTAP DB ARCHITECTURE - REPORT CARD

Scalability
✓ Update contention handled by microservices and data striping.

-- Still some complexity in scaling data tier and transaction processing

tier

Performance
✓ Ability to perform analytics without impacting OLTP

-- Transaction Processing Performance not optimal due to

remote state. Have to scale very wide to absorb analytics streams

Agility
✓ Microservices allows more agile, lower risk delivery

-- Unclear who owns database schema when database is doing

double duty for analytics and transaction processing.

-- Complexity mapping application state to database schema.

Scale?

Throughput / Latency?

A

B

?

?

?

?

TAKING IT TO THE NEXT LEVEL – THE X PLATFORM

THE X PLATFORM

The X Platform is a memory oriented platform

for building multi-agent, transactional applications.

Collocated State + Business Logic = Full Promise of In-Memory Computing

THE BIG PICTURE

✓Message Driven

✓ Stateful - 100% In Memory

✓Multi-Agent

✓Totally Available

✓Horizontally Scalable

✓Ultra Performant

EXTREMELY SIMPLE PROGRAMMING MODEL

M E S S A G E

H A N D L E R S

M E S S A G E S S T A T E

< messages >
…
< messages >
< message name=“MyInboundMessage” >
< field name=“value” type=“Long” / >

< / messages >
< / entitles >
< / model >

< model >
…
< entities >
< entity name=“MyAppState” >
< field name=“counter” type=“Long” / >

< / entity >
< / entitles >
< / model >

@EventHandler
public void onMessage(MyInboundMessage,message,

MyAppState state) {
long counter = state.getCounter();
counter + = message.getValue();
state.setCounter(counter);

MyOutboundMessage out = MyOutboundMessage.create();
this.messageSender.send(out);

}

✓ Scales horizontally
✓ Incredibly Fast
✓ Fault tolerant
✓ Zero Garbage ✓ Single Thread Handler Logic

✓ Provider Agnostic Messaging
✓ Transparent State Replication
✓ Exactly Once Atomic Handling

src/main/models/…/messages/messages.xml src/main/models/…/messages/state.xml

src/main/java/…/MyApp.java

B U I L D – T I M E
C O D E G E N E R A T I O N

B U I L D – T I M E
C O D E G E N E R A T I O N

✓ Built-In Schema
Evolution

HTAP WITH X – IN TRANSACTION ANALYTICS

Transaction Processing +

In Transaction Analytics
DATA WAREHOSE

HTAP

DB

Analytics Analytics

Service A

Partition 1

Request Traffic

Service A

Partition 2

Smart Routing

(messaging traffic partitioned to align with data partitions)

Data

“Striped”

Analytics Results

Streamed Back to

Transaction Processors

1 2 …

1 2 …
Journal

Storage

Journal

Storage

100% In Memory State

As Java Objects

Async, Transactionally

Consistent Change Data

Capture

X PLATFORM - RELIABILITY

Primary Backup

➢Fast

➢Durable

➢Consistent

➢Scales

➢Simple

In Application Memory Replicated + Partitioned

Smart Routing

(messaging traffic partitioned to align with data partitions)

Processing Swim-lanes

➢ Operate at memory speeds

➢ Plumbing free domain

➢ Scales with size and volume

Application State fully

in Local Memory

Single-Threaded

Dispatch

Pipelined

Stabilization

Pure domain

code

AAA

X PLATFORM FOR HTAP- REPORT CARD

Scalability
✓ Update contention handled by microservices and data striping

✓ Single scaling metric: state scales with application

Performance
✓ Maximum throughput since state is local to function

✓ Local state allows in transaction analytics

✓ Change Data Capture allows asynchronous, optionally conflated

Reliability / Availability
✓ Pipelined Replication to Hot Backup(s),

✓ Journaled Storage, Change Data Capture to

Agility
✓ Microservices allows more agile, lower risk delivery

✓ Fire and Forget Messaging, Objects Transparently Persisted, Atomic

✓ Pure Business Logic, no infrastructure bleed

✓Async
WARE

HOUSE

✓Fast

B

✓Scales

✓Simple

REAL LIFE USE CASES

 MGM Resorts International

 eCommerce Engine is authored on the X Platform

 10 services/26 agents comprise the eCommerce service suite

 Key metrics

 All state, reference and transactional fully in-memory: ~1TB of in-memory state

 Low 10s of millisecond catalogue/pricing update latency

 Full 14 month dynamic pricing response time to website

 Sub-second rate update to partner (wan)

 SSO storage engine authored on the X Platform

 Authored as a distributed, persistent, partitioned hash map

 Authored on X in 3 hours!

 <10ms response times @ 20k updates per second

 Bottleneck in messaging bus, X has plenty of more capacity

FRAUD DETECTION

FRAUD DETECTION: PERFORMANCE

200k Merchants

40k Card Holders

80k Cards

1 Year Card History

Only 2 partitions per agent

All agents running on just 2 servers

7,500 auth/sec, Full HA + X-Once

Auth Response Time = 1.2ms

Getting Started Guide

https://docs.neeveresearch.com

Reference Applications

https://github.com/neeveresearch/nvx-apps

We’re Listening

contact@neeveresearch.com

GETTING STARTED WITH X PLATFORM™

https://docs.neeveresearch.com/
https://github.com/neeveresearch/nvx-apps
mailto:contact@neeveresearch.com

Questions
?

