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security, distributed systems, Big Data and 
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• Architect and Visionary at EPAM’s BigData CC
• Focusing is on scalable, fault tolerant 

distributed share-nothing clusters
• Led projects for financial and banking 

industries with intensive distributed in-memory 
calculations
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Modern data-processing architectures
In-memory Data Fabric
Iota in action: virtual data platform
Use cases

AGENDA



Don’t separate batch and stream data processing
Compute should be co-located with data
Data mutations have to be tracked
Data concurrency is annoying

That’s it: you can go now

EVERYTHING IS IN ONE SLIDE
THE REST IS MERE DETAILS



• Lambda (λ): an anonymous function (closure)
def greeting = { it -> "Hello, $it!" }  
assert greeting('SEC 2017') == 'Hello, SEC 2017!'

• PaaS server-less architecture (AWS Lambda and alike)
exports.handler = function (event, context) { 
context.succeed('Hello, SEC 2017!'); 
};

NOT ALL LAMBDAs ARE EQUAL
Greek alphabet needs more letters



• Consists of three main layers
1. High-latency layer for historical
2. Speed layer for recent/stream 

data
3. Smart  reconciliation layer

• Properties
Immutable, one-way data ingest

• Drawbacks
• Data accuracy is an issue
• High operational complexity

LAMBDA: QUICK OVERVIEW
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Simplified to
1. Streaming source
2. Streaming processing
3. Stream-only serving DB

Properties
Historical processing is a stream
Reprocessing is just a stream job

Drawbacks
• (Re)streaming of the historical data on replay
• Moderate operational complexity

SOME LAMBDAs ARE KAPPAs
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• Processing (Lambda) architecture for slow and fast data 

NEXT TO EACH OTHER

Batch (slow): ’Hello, ’

Events Stream (fast): ’I’,’M’,’C’,’S’,’ ’,’2’,’0’,’1’,’7’,’!’
Serving DB 

(to reconcile)

• Some Lambdas are really Kappas

Events

Stream Processor: ’Hello’, ’I’,’M’,’C’,’S’,’ 
’,’2’,’0’,’1’,’7’,’!’ Serving DB 

(up-to-date)Code change: 
repocessing Catch-up

Code change: repocessing



IN-MEMORY DATA FABRIC
PICTURE OR IT NEVER HAPPEND

• Separation of concerns
• Sources
• Consumers
• Abstraction and 

processing



Data Fabric is a unified view of data in multiple systems
A layer for data access

Low redundancy; few data movements
Write-through caching (might violate legacy app data integrity)

Affinity sensitive compute medium
Highly-available and fault tolerant
Variety of APIs and integration with BigData

IN-MEMORY DATA FABRIC
IN A NUTSHELL



NEXT STEP: IOTA
BIGMEMORY

In-Memory Data Fabric

Events

RDBMS
Cloud 

storage DFS

Cache

Batch

Real-
time



Don’t separate batch and stream data processing
Compute should be co-located with data
Data mutations have to be tracked (watched and 
versioned)
Data concurrency is annoying

A STEP TOWARDS THE DATA



Data state, persistency and immutability
Misperception of data primacy – what is the main copy?
Versioning of data, data structures, code and metadata
Uniform data access, Multi-structured data
Granular data access rights and security
ETL/ELT & Data Marts, Data lifecycle

ISSUES OF DATA STORING & PROCESSING



TWO BREEDS OF DATAWAREHOUSES

Provides higher performance
Integrates Data from 
heterogeneous sources
Simplifies analyses: Data are 
ready for direct querying
Extra storage for copied data
Complex CDC for each data 
source

Update-Driven

Builds wrappers/mediators on 
top of heterogeneous databases
Translates query to data-source 
specific
Single-Source-of-Truth practice
Complex information filtering
Massive data pull from data 
sources

Heterogeneous Query-Driven



Query-Driven Warehouse borrowed from BigData:
On demand extraction from schema-on-read data
Avoids complex ETLs

BigData addresses high query costs of Query-Driven 
Warehouse:

Read less data: partitioning
Lesser shuffle: share nothing, collocation, local filtering (pushdown)

Requires sophisticated extendable metadata

BIGDATA & QUERY-DRIVEN WAREHOUSE



Primary Data are nondeterministic, non-reproducible and UNIQUE
persistent and immutable

Derived Data  are deterministic and reproducible EXACTLY
ephemeral and immutable

Versioned  metadata are Primary by its nature
persistent and immutable

Versioned Code is Primary by its nature
persistent and immutable

All abovementioned are immutable and therefor, STATELESS!

TWO BREEDS OF DATA
PRIMARY & DERIVED



No data concurrency issues
Majority of transactions are RAMP

Leveraging functional programming paradigm (lambda again!)
Read-through & memoization
Higher re-use of the code

Avoiding complex ETLs
On-demand extraction from schema-on-read data

BENEFITS OF STATELESSNESS



Persistent WORM stores 
(Write Once Read Many)

Primary data
Metadata & Code

Transient Cache stores
Derived data

Compute Engine
Reads WORM & Cache
Produces results
Puts results to Cache

MOVING PARTS



PARTITIONING VS PATCHWORK
HOW TO READ LESS

• Partitions: statically defined in DDL
• Patchworks: arbitrary structure of 

dynamically built patches



Data Blocks:
Describe a quantum of data
A set of semantically similar objects, limited by some dimensions
A URI: ftp, web, files, a parametrized SQL SELECT

Data Catalog:
A part of versioned metadata
Organizes Data Blocks into a Patchwork
Is a functional equivalent of RDBMS catalog

PATCHWORK
DATA BLOCKS & DATA CATALOG



Cache is transparent and transient by its nature:
Holds function results, instead of actual calls
Might hold Data Blocks

Cache Entry includes Key, Value, and Statistics:
last time value was accessed and how often (frequency)
dependency depth
resources spent, like CPU and IOs

Retention & Eviction:
Is based on Cache Entry statistics
The dependency graph’ Data Blocks are evicted with root entry

CACHE



• Dependency graph is built from data access’ history:
• Could be replaced by a reference to Data Block (compacted)

• Invalidation & Lineage is driven by dependency graph
• Functions: follow memoization pattern
• Scalability – just put more boxes there, if:

• WORM uses distributed Key-Value storage
• Cache & Calculation engine use In-Memory Data Fabric

MISCELLANEOUS ASPECTS



Better data lakes: bi-directional data movements
Minimal networking, Memory-centric, Integration with legacy

Real-time personalization
Better shopping with mobile devices, Location-based marketing
Near real-time promotions, Advanced analytics
Simplified ML-driven CEP

Fraud detection
Discovery of complex fraud patterns, based on historical data
Real-time detection of abnormal behavior
Simplified ML-driven CEP

USE CASES



• Avoiding multiple copies of the data, instant consistency
• In-memory caching with read-ahead/write-behind support
• Batch, streaming, CEP, and (near) real-time processing
• Speeding up a traditionally slow, batch oriented frameworks
• Variety of data processing: read-only, read-write, transactional
• Lower inter-component impedance 

IOTA BENEFITS



Q & A


