
IOTA ARCHITECTURE:
DATA VIRTUALIZATION

AND PROCESSING
MEDIUM

DR. KONSTANTIN BOUDNIK
DR. ALEXANDRE BOUDNIK

DR. KONSTANTIN BOUDNIK

• Over 20+ years of expertise in distributed
systems, big- and fast-data platforms

• Apache Ignite Incubator Champion
• Author of 17 US patents in distributed

computing
• A veteran Apache Hadoop developer
• Co-author of Apache Bigtop, used by Amazon

EMR, Google Cloud Dataproc, and other
major Hadoop vendors

• Co-author of the book "Professional Hadoop”

EPAM SYSTEMS 
CHIEF TECHNOLOGIST BIGDATA, 

OPEN SOURCE FELLOW 

DR.KONSTANTIN BOUDNIK

DR. ALEXANDRE BOUDNIK

• Over 25 years of expertise in compilers, query
engine for MPP development, computer
security, distributed systems, Big Data and
Fast Data

• Architect and Visionary at EPAM’s BigData CC
• Focusing is on scalable, fault tolerant

distributed share-nothing clusters
• Led projects for financial and banking

industries with intensive distributed in-memory
calculations

EPAM SYSTEMS 
LEAD SOLUTION ARCHITECT

BIG& FAST DATA  

DR.ALEXANDRE BOUDNIK

Modern data-processing architectures
In-memory Data Fabric
Iota in action: virtual data platform
Use cases

AGENDA

Don’t separate batch and stream data processing
Compute should be co-located with data
Data mutations have to be tracked
Data concurrency is annoying

That’s it: you can go now

EVERYTHING IS IN ONE SLIDE
THE REST IS MERE DETAILS

• Lambda (λ): an anonymous function (closure)
def greeting = { it -> "Hello, $it!" }  
assert greeting('SEC 2017') == 'Hello, SEC 2017!'

• PaaS server-less architecture (AWS Lambda and alike)
exports.handler = function (event, context) {
context.succeed('Hello, SEC 2017!'); 
};

NOT ALL LAMBDAs ARE EQUAL
Greek alphabet needs more letters

• Consists of three main layers
1. High-latency layer for historical
2. Speed layer for recent/stream

data
3. Smart reconciliation layer

• Properties
Immutable, one-way data ingest

• Drawbacks
• Data accuracy is an issue
• High operational complexity

LAMBDA: QUICK OVERVIEW

1

3

2

Simplified to
1. Streaming source
2. Streaming processing
3. Stream-only serving DB

Properties
Historical processing is a stream
Reprocessing is just a stream job

Drawbacks
• (Re)streaming of the historical data on replay
• Moderate operational complexity

SOME LAMBDAs ARE KAPPAs

1
32

• Processing (Lambda) architecture for slow and fast data

NEXT TO EACH OTHER

Batch (slow): ’Hello, ’

Events Stream (fast): ’I’,’M’,’C’,’S’,’ ’,’2’,’0’,’1’,’7’,’!’
Serving DB 

(to reconcile)

• Some Lambdas are really Kappas

Events

Stream Processor: ’Hello’, ’I’,’M’,’C’,’S’,’
’,’2’,’0’,’1’,’7’,’!’ Serving DB 

(up-to-date)Code change:
repocessing Catch-up

Code change: repocessing

IN-MEMORY DATA FABRIC
PICTURE OR IT NEVER HAPPEND

• Separation of concerns
• Sources
• Consumers
• Abstraction and

processing

Data Fabric is a unified view of data in multiple systems
A layer for data access

Low redundancy; few data movements
Write-through caching (might violate legacy app data integrity)

Affinity sensitive compute medium
Highly-available and fault tolerant
Variety of APIs and integration with BigData

IN-MEMORY DATA FABRIC
IN A NUTSHELL

NEXT STEP: IOTA
BIGMEMORY

In-Memory Data Fabric

Events

RDBMS
Cloud

storage DFS

Cache

Batch

Real-
time

Don’t separate batch and stream data processing
Compute should be co-located with data
Data mutations have to be tracked (watched and
versioned)
Data concurrency is annoying

A STEP TOWARDS THE DATA

Data state, persistency and immutability
Misperception of data primacy – what is the main copy?
Versioning of data, data structures, code and metadata
Uniform data access, Multi-structured data
Granular data access rights and security
ETL/ELT & Data Marts, Data lifecycle

ISSUES OF DATA STORING & PROCESSING

TWO BREEDS OF DATAWAREHOUSES

Provides higher performance
Integrates Data from
heterogeneous sources
Simplifies analyses: Data are
ready for direct querying
Extra storage for copied data
Complex CDC for each data
source

Update-Driven

Builds wrappers/mediators on
top of heterogeneous databases
Translates query to data-source
specific
Single-Source-of-Truth practice
Complex information filtering
Massive data pull from data
sources

Heterogeneous Query-Driven

Query-Driven Warehouse borrowed from BigData:
On demand extraction from schema-on-read data
Avoids complex ETLs

BigData addresses high query costs of Query-Driven
Warehouse:

Read less data: partitioning
Lesser shuffle: share nothing, collocation, local filtering (pushdown)

Requires sophisticated extendable metadata

BIGDATA & QUERY-DRIVEN WAREHOUSE

Primary Data are nondeterministic, non-reproducible and UNIQUE
persistent and immutable

Derived Data are deterministic and reproducible EXACTLY
ephemeral and immutable

Versioned metadata are Primary by its nature
persistent and immutable

Versioned Code is Primary by its nature
persistent and immutable

All abovementioned are immutable and therefor, STATELESS!

TWO BREEDS OF DATA
PRIMARY & DERIVED

No data concurrency issues
Majority of transactions are RAMP

Leveraging functional programming paradigm (lambda again!)
Read-through & memoization
Higher re-use of the code

Avoiding complex ETLs
On-demand extraction from schema-on-read data

BENEFITS OF STATELESSNESS

Persistent WORM stores
(Write Once Read Many)

Primary data
Metadata & Code

Transient Cache stores
Derived data

Compute Engine
Reads WORM & Cache
Produces results
Puts results to Cache

MOVING PARTS

PARTITIONING VS PATCHWORK
HOW TO READ LESS

• Partitions: statically defined in DDL
• Patchworks: arbitrary structure of

dynamically built patches

Data Blocks:
Describe a quantum of data
A set of semantically similar objects, limited by some dimensions
A URI: ftp, web, files, a parametrized SQL SELECT

Data Catalog:
A part of versioned metadata
Organizes Data Blocks into a Patchwork
Is a functional equivalent of RDBMS catalog

PATCHWORK
DATA BLOCKS & DATA CATALOG

Cache is transparent and transient by its nature:
Holds function results, instead of actual calls
Might hold Data Blocks

Cache Entry includes Key, Value, and Statistics:
last time value was accessed and how often (frequency)
dependency depth
resources spent, like CPU and IOs

Retention & Eviction:
Is based on Cache Entry statistics
The dependency graph’ Data Blocks are evicted with root entry

CACHE

• Dependency graph is built from data access’ history:
• Could be replaced by a reference to Data Block (compacted)

• Invalidation & Lineage is driven by dependency graph
• Functions: follow memoization pattern
• Scalability – just put more boxes there, if:

• WORM uses distributed Key-Value storage
• Cache & Calculation engine use In-Memory Data Fabric

MISCELLANEOUS ASPECTS

Better data lakes: bi-directional data movements
Minimal networking, Memory-centric, Integration with legacy

Real-time personalization
Better shopping with mobile devices, Location-based marketing
Near real-time promotions, Advanced analytics
Simplified ML-driven CEP

Fraud detection
Discovery of complex fraud patterns, based on historical data
Real-time detection of abnormal behavior
Simplified ML-driven CEP

USE CASES

• Avoiding multiple copies of the data, instant consistency
• In-memory caching with read-ahead/write-behind support
• Batch, streaming, CEP, and (near) real-time processing
• Speeding up a traditionally slow, batch oriented frameworks
• Variety of data processing: read-only, read-write, transactional
• Lower inter-component impedance

IOTA BENEFITS

Q & A

