IN-MEMORY COMPUTING:
\Q IT'S NEW AND IT'S NOT...

LARRY STRICKLAND
DATAKINETICS




LARRY STRICKLAND

Chief Product Officer ?

In-Memo
In COmpUﬁIr'lyg 2017

SUMMIT



s A
: A
> .'6.'/
I ’

DATAKINETICS 2




So why am | presenting here today ?

In-Memo
In Computirl;vg 20



IS THE MAINFRAME STILL RELEVANT?

Used by 92% of the
top 100 global hanks

10% of all business

e Processes nearly 100% of @ transactions
all credit card transactions H 959% of daily
ATM transactions

Manages 80% of
all corporate data
Processes nearly all

airline reservations

80% of Point Of Sale
transactions

O,
®
®
®

In-Memo
In Computing 27"



,
WHY IS IN-MEMORY CONSIDERED (ON MAINFRA

5
j,',/ //"”' /

" It's nearly always about the $

“ However, when looking deeper, the rational is always one of:
“ Improve Response Time
“ Reduce Elapsed Time
“ Reduce CPU Usage

In-Memory
In Computirl’\yg 0



TWO PARTS ....

“ Reducing I/0 wait times
[ |

“ Reduced Code Path

Improves Response Time “ Improves Response Time

“ Reduces Elapsed Time “ Reduces Elapses Time

“ Reduces CPU Usage
“ (minimal impact on CPU used)

In-Memo
In] Computing s



In

Caching
Buffering

“ DB2 buffering

“ Buffer pools

“  3rd-party buffer tools like BPT, BPA4DB2

“  VSAM Buffers

CICS managed data tables
COBOL internal tables

SSD ?

In-Memory
Computing

SUMMIT
2017




CPU Seconds Consumed Number of Reads [ Inserts per Second
250,000 500,000 750,000 1,000,000

L1 | | |

L)
Random Access : Upto 23
(hash) times faster

gl e - I
(aequential) times faster

“ Reduces Code

’ S Upto 9
Path Sequentia Browse | D g

Upte30

times faster

Populate Tables

U With tableBASE . Without tableBASE

In-Memo
In Computir% 0



WHAT WE'VE LEARNED ALONG THE WAY

- WHICH DATA?

« INDEXING IS VERY IMPORTANT

 NOT ALL HASHES ARE CREATED EQUAL
* RULES, RULES, RULES

- SEPARATE OUT READ-ONLY

- ACCUSATIONS FLY

In-Memo
In Computirl;vg 20



WHICH DATA?

WHAT TO PUT IN-MEMORY

In-Memo
In Computirr\vg 20



BIG OR SMALL TRANSACTIONAL'DATA

“ Large data takes longer to search, so has huge Elapsed

time advantages in being accessed from Memory Every row read into memory

"  Great Response Time Improvement _ Not every row read once it is
“ Great Elapsed Time Improvement there

“ CPU impact is minimal

“ Small data - small in size, accessed very frequently
(Reference Data)

“  Good Response time Improvement _ Every row read into memory
" Good Elapsed Time Improvement tEvery row read potentially 1,000’s of
imes

“ CPU impact is huge

In-Memo
In Computill;yg 0



IN-MEMORY TECHNOLOGY: LOOKING AT CPU

Product table
—F (200 rows)

“ Consider the large table here

“ You won’t gain much my reading it into memory and
accessing the data from there — as each row isn’t read

frequently Tax region
“ Different story for smaller reference data tables : O(t\?rl\me )
JIHHOW
“ Top table is read once into memory, then each row 5>

accessed 50,000 times from memory

“ Bottom table is read once into memory then each row is
accessed 2,000 times from memory

“ In actual use, some rows are read once into memory and
accessed from there many millions of times per day...

Data from every
" In-Memory transaction from previous

Computing 27" day

(10,000,000 rows)




Challenge
“ Reconciliation batch processing taking too long

Solution

“Move a table describing the credit card options into tableBASE
“ Each transaction required data from that table

Results
W 97% reduction in CPU time
¥ Batch job that took 8 hours to complete now takes 15 min

In-Memo
In Computir% 0

Elapsed time in minutes

| I wihshbnac . Without -ableRASE




BIG OR SMALL DATA - ECONOMICS

“ Large data takes longer to search, so has huge Elapsed time
advantages in being accessed from Memory

“ Great Response Time Improvement _ ?OSt neut(;al OF MOTE BXPENSIVE
INCreasea memory

“  Great Elapsed Time Improvement requirements)

“ CPU impact is minimal

“ Small data - small in size, accessed very frequently (Reference
Data)

" Good Response time Improvement — Reduces

_ cost
“ Good Elapsed Time Improvement

“ CPU impact is huge

In-Memo
In Compuﬁrrmyg 0



INDEXING IS
IMPORTANT

PROBABLY OBVIOUS BUT...

In-Memo
In Computirl;vg 20



INDEXING IS IMPORTANT

“ COBOL Internal Tables are in Memory
“ Often used to manage temporary tables
“ Primary index — no alternative indexes

“ Serial Search required if alternative searches required

In-Memo
In] Computing s



ONE CUSTOMER’S EXPERIENCE

Challenge

“ A COBOL program was using an internal table and a binary search

® The search code was called 1.25 million times and had 4 searches in it
“ Took over an hour of CPU to execute

Solution
“ Replace the 4 searches with calls to tableBASE

Results
“ 98.3% reduction in CPU
“ Now takes less than a minute to execute

In-Memo
In Computir% 0

with
tablcEASE

without
1ablcBASE




INDEXES

“ Indexing for Speed (with tableBASE — but probably generally applicable for other implementations)
“ <10 rows — serial search

“ >10, <100 rows — binary search

“ >100 rows — Hash search

In-Memo
In] Computing s



HASH INDEXING

NOT ALL HASHES
ARE CREATED EQUAL

In-Memo
In Computirl;vg 20



WHAT DOES HASH DO?

“ Maps space to another space >

“ One way

“ Typically shrinks (doesn’t have to)
“ Arbitrary bytes to number

“ Can encrypt

In-Memo
In Computir% 2o



WHEN USING HASH TO INDEX

“ Hash is used to calculate a slot

“ Slot calculated can simply be a
pointer to the key (if in memory)

“ Need to deal with collisions Slot (address) Slots

“ Density is #keys/#slots

“ Higher value

“ less memory used

“  More collisions

“  Lower value

“  more memory

“ Less collisions

\

Possible values of Key
In-Memo
In] Computing s



HASH ALGORITHM BEHAVIOR - FIRST ATTEMPT

Collisions / Key

0.175

0.17
0.16
—
== |deal
0.1656

0.15

0.145

SIS I I IS

In-Memo
In Compuhrﬂvg b1



n
p
LU
A<
Q
-
<
—
LU
14
14
O
S
e
-
-
7,
LU
14
L
=
O
7

CPU ! Key

Collisions / Key

10000

1000

AN\ N

- 0.01

= deal

ry
rg g

In-Memo
Computi

lin]



n
LLI
=
<
Z
o
LLI
i
<
LLI
=
O
N
<
O
2=
X
O
O
-1

012
0.1

CPU / Key - Best

23

0
0

/)
yavi

Collisions / Key - Best

13

—_—
— 3

0.08
006
004

-—F
-3
11:1 —D

= o)

0.02

S

L))

In-Memo

| SUMMIT

4 A
ng 20:7

Computi

lin]



>0 WHERE DOES THIS LEAVE US?

“ If we don’t know much — should use a Hash with low collisions
“ | recommend the Fowler-Noll-Vo Hash function (FNV)

“ But, if we know
“  Well distributed key
“  Small number of keys

“ V. Low Density

..... we may consider a cheaper function to calculate Hash

In-Memo
In] Computing s



SPECIFIC HASHES

“ With some knowledge of a key, we can create some very
effective (high performance, low collisions) Hashes.

“ E.g. Canadian Postcodes e.g K1A 3M2
“ Letters D, F, I, O, Q or U are not used
“ Letters W, or Z are not used in first position
“ 6 bytes have 300,000,000,000 combinations

Camponents aof a

= Can limit to 7,400,000 with knowledge of distribution Canadian postal code
. Forward Loca!

“ Only about 830,000 in use Sotation - Deliery

Area uFCA L/nit SLDU

K1A 0Bl

T l"-_-'Subclivlslr.m

Province (disoricls, smzaller cilizs)

In-Memo Urban cor Rural area

In Computing 27"




S TANDARD HASH

* There are standard Hash algorithms out there
»  Linux 32 and 64 bit Hash algorithm
F(byte []) = (X}Zop" byte[k] ) mod (2")
where p is a prime (31),and
n is the number of bytes

bis32or 64

* Maps any string to either 32 or 64 bit number
» Doesn’t behave well with high densities

» However,combinations 22 or 2°* - so low densities should be guaranteed

In-Memo
In] Computing s



RULES, RULES,
RULES

MOST FREQUENTLY READ TABLES

In-Memo
In Computirr\vg 20



RULES PROCESSING

Legacy Rules
“ Business rules are among the organization’s most valuable Processing Application

intellectual property. i —

“ For speed of processing, business rules were often
embedded within mainframe applications. -
Embedded Business Rules

h--

“ For business flexibility, these are often externalized into rules
tables

“ Rules tables accessed potentially 100’s of times per (
transaction

“ Processing transaction logic

“ Fraud Rules

Business rules externalized
into High-performance

In In-Memory in-memory tanles - b

Transaction
Processing

Computing 37" Rules Processing

Applications



SEPARATE OUT READ-
ONLY

GETTING MORE EFFICIENT

In-Memory
D ompuhng 07



SHARED MEMORY TABLES

“ Read and Write locks are standard practices to allow multiple programs to access the same table
(almost) simultaneously

“ Routines required to deal with failures to remove locks and clean up
“ 60-85% of code path!

“ Alternatives
“  Separate out Read-Only data (no locks required) 3 to 4 times improvement

“ Use table versioning and logical switches

In-Memo
In Computirl’\yg 0



LET THE
ACCUSATIONS FLY

WHAT HAPPENS WHEN YOU REMOVE THE
1O WAIT TIME

In-Memo
In Computirl;vg 20



ACCUSATIONS

“ You’re using all the CPU! “ You’re using all the memory

In-Memo
In Computirr\vg 20



CONCLUSION

In-Memo
In Computirr\vg 20



CONCLUSION

“ The Mainframe is still relevant

“ In-memory can help on multiple fronts

“ But needs a business case

In-memory small data has a bigger impact on $

Indexing (including the appropriate Hash function) is essential
Rule tables are often the most read

Careful what you wish for

In-Memo
In] Computing s



