
IN-MEMORY COMPUTING:
IT'S NEW AND IT'S NOT...

LARRY STRICKLAND
DATAKINETICS

LARRY STRICKLAND

Chief Product Officer ?

?

So why am I presenting here today ?

IS THE MAINFRAME STILL RELEVANT?

WHY IS IN-MEMORY CONSIDERED (ON MAINFRAMES)

It’s nearly always about the $

However, when looking deeper, the rational is always one of:
Improve Response Time
Reduce Elapsed Time
Reduce CPU Usage

TWO PARTS ….

Reducing I/O wait times
Improves Response Time
Reduces Elapsed Time

(minimal impact on CPU used)

Reduced Code Path
Improves Response Time
Reduces Elapses Time
Reduces CPU Usage

MAINFRAME USES MANY TECHNIQUES FOR REDUCING I/O

Caching

Buffering
DB2 buffering
Buffer pools
3rd-party buffer tools like BPT, BPA4DB2
VSAM Buffers

CICS managed data tables

COBOL internal tables

SSD ?

TABLEBASE – IN-MEMORY TABLE MANAGER

Removes I/O
Reduces Code
Path

WHAT WE’VE LEARNED ALONG THE WAY
• WHICH DATA?
• INDEXING IS VERY IMPORTANT
• NOT ALL HASHES ARE CREATED EQUAL
• RULES, RULES, RULES
• SEPARATE OUT READ-ONLY
• ACCUSATIONS FLY

WHICH DATA?
WHAT TO PUT IN-MEMORY

BIG OR SMALL TRANSACTIONAL DATA

Large data takes longer to search, so has huge Elapsed
time advantages in being accessed from Memory

Great Response Time Improvement
Great Elapsed Time Improvement
CPU impact is minimal

Small data - small in size, accessed very frequently
(Reference Data)

Good Response time Improvement
Good Elapsed Time Improvement
CPU impact is huge

Every row read into memory 
Not every row read once it is
there

Every row read into memory
Every row read potentially 1,000’s of
times

IN-MEMORY TECHNOLOGY: LOOKING AT CPU

Consider the large table here
You won’t gain much my reading it into memory and
accessing the data from there – as each row isn’t read
frequently

Different story for smaller reference data tables
Top table is read once into memory, then each row
accessed 50,000 times from memory
Bottom table is read once into memory then each row is
accessed 2,000 times from memory

In actual use, some rows are read once into memory and
accessed from there many millions of times per day…

Data from every
transaction from previous

day 
(10,000,000 rows)

Product table  
(200 rows)

Tax region
table 

(5000 rows)

RESULTS FROM CREDIT CARD PROCESSING

Challenge
Reconciliation batch processing taking too long

Solution
Move a table describing the credit card options into tableBASE
Each transaction required data from that table

Results
97% reduction in CPU time
Batch job that took 8 hours to complete now takes 15 min

BIG OR SMALL DATA - ECONOMICS

Large data takes longer to search, so has huge Elapsed time
advantages in being accessed from Memory

Great Response Time Improvement
Great Elapsed Time Improvement
CPU impact is minimal

Small data - small in size, accessed very frequently (Reference
Data)

Good Response time Improvement
Good Elapsed Time Improvement
CPU impact is huge

Cost neutral or more expensive
(increased memory
requirements)

Reduces
cost

INDEXING IS
IMPORTANT
PROBABLY OBVIOUS BUT…

INDEXING IS IMPORTANT

COBOL Internal Tables are in Memory
Often used to manage temporary tables
Primary index – no alternative indexes

Serial Search required if alternative searches required

ONE CUSTOMER’S EXPERIENCE

Challenge
A COBOL program was using an internal table and a binary search
The search code was called 1.25 million times and had 4 searches in it
Took over an hour of CPU to execute

Solution
Replace the 4 searches with calls to tableBASE

Results
98.3% reduction in CPU
Now takes less than a minute to execute

INDEXES

Indexing for Speed (with tableBASE – but probably generally applicable for other implementations)
<10 rows – serial search
>10, <100 rows – binary search
>100 rows – Hash search

NOT ALL HASHES
ARE CREATED EQUAL

HASH INDEXING

Maps space to another space
One way
Typically shrinks (doesn’t have to)
Arbitrary bytes to number
Can encrypt

WHAT DOES HASH DO?

Hash is used to calculate a slot
Slot calculated can simply be a
pointer to the key (if in memory)
Need to deal with collisions

Density is #keys/#slots
Higher value

less memory used
More collisions

Lower value
more memory
Less collisions

WHEN USING HASH TO INDEX

Possible values of Key

Slot (address) Slots

HASH ALGORITHM BEHAVIOR - FIRST ATTEMPT

SOME RESULTS (CORRELATED KEYS)

LOOKING AT SOME ALTERNATIVES

If we don’t know much – should use a Hash with low collisions
I recommend the Fowler-Noll-Vo Hash function (FNV)

But, if we know
Well distributed key
Small number of keys
V. Low Density

….. we may consider a cheaper function to calculate Hash

SO WHERE DOES THIS LEAVE US?

With some knowledge of a key, we can create some very
effective (high performance, low collisions) Hashes.

E.g. Canadian Postcodes e.g K1A 3M2
Letters D, F, I, O, Q or U are not used
Letters W, or Z are not used in first position
6 bytes have 300,000,000,000 combinations
Can limit to 7,400,000 with knowledge of distribution
Only about 830,000 in use

SPECIFIC HASHES

STANDARD HASH

RULES, RULES,
RULES
MOST FREQUENTLY READ TABLES

RULES PROCESSING

Business rules are among the organization’s most valuable
intellectual property.
For speed of processing, business rules were often
embedded within mainframe applications.
For business flexibility, these are often externalized into rules
tables
Rules tables accessed potentially 100’s of times per
transaction

Processing transaction logic
Fraud Rules

SEPARATE OUT READ-
ONLY 
GETTING MORE EFFICIENT

SHARED MEMORY TABLES

Read and Write locks are standard practices to allow multiple programs to access the same table
(almost) simultaneously

Routines required to deal with failures to remove locks and clean up
60-85% of code path!

Alternatives
Separate out Read-Only data (no locks required) 3 to 4 times improvement
Use table versioning and logical switches

LET THE
ACCUSATIONS FLY
WHAT HAPPENS WHEN YOU REMOVE THE
IO WAIT TIME

ACCUSATIONS

You’re using all the CPU! You’re using all the memory

CONCLUSION

CONCLUSION

The Mainframe is still relevant
In-memory can help on multiple fronts

But needs a business case

In-memory small data has a bigger impact on $
Indexing (including the appropriate Hash function) is essential
Rule tables are often the most read
Careful what you wish for

