
AN IGNITE
COMPUTE GRID IN

THE CLOUD
CHRIS BERRY

SO. WHAT'S THE APPLICATION?

"Akira” -- the "Rates Engine" for HomeAway
Computes quotes based on cached “Rate Data”

High volume/low latency application
Average: 12B quotes per day @ ~40ms p95
Computed in batches of ~200 avg. (~2300batches/
sec)
Over ½ TB of Rate Data

AND WHAT'S THE JOB?

Migrate from old-school, terrestrial deployment to the
Cloud.
Simplify whatever we can in the process.
Modernize the stack while we're at it.
And don’t break things!

THE OLD-SCHOOL, TERRESTRIAL AKIRA.

SO. WHY NOT PORT IT TO THE CLOUD AS IS?

SO. WHY NOT PORT IT TO THE CLOUD AS IS?

SO. WHY NOT PORT IT TO THE CLOUD AS IS?

OK. WHY NOT USE REDIS / MEMCACHED /... ?

Those pesky Laws of Physics intervene.
The Rate Data to compute a quote is large (~0.25MB/
unit)

0.25M * 200/batch over 1Gbit network ~= 500ms
Before you even start computing!

SO. HOW DO WE SOLVE THIS?  
IN-MEMORY COMPUTING. OF COURSE.

The Apache Ignite Compute Grid
Provides a simple map/reduce
Distributed Caches w/ affinity
Collocated compute & data.

LET'S START AT THE BEGINNING.

Already had a well written, well tested code base
So. Don't poke the bear
Perturb things as little as possible
Allow for continued feature work

Ignite is almost a drop-in replacement
HashMap => IgniteCache

SO. HOW EXACTLY DID THAT WORK?

1. Added "hooks" to allow extensibility where there wasn’t.
Allowed for an alternative store (HashMap), etc.

2. Extracted the existing Server as a standalone JAR
Excluding all the old school bits (like Jersey1).

3. Dropped this JAR into a modern, Dropwizard application
4. Rolled that all up into an executable JAR
5. And saved the artifacts off into a Maven repo.

AND THEN WHAT?

Created a reusable Jenkins job for Dropwizard apps
Takes the Dropwizard, executable JAR from the Maven
repo.

Plus all of the necessary configuration.

Wraps it up with some reusable , bash “control scripts”

Rolls all this into a Docker Image
Using Docker ONBUILD & build-args to parameterize.
On top of “blessed Images”; Ubuntu & Java8

And drops it into a Docker repo.

SO. NOW WE HAVE AN DOCKER IMAGE.  
LET'S DEPLOY IT TO AWS.

MultiPaas – HomeAway’s Platform as a Service
Uses Mesos/Marathon for the orchestration of Containers.
Employs Docker to run Containers.
On a base infrastructure (AMIs), Terraform-ed onto AWS.
Consul for Service Discovery.
ContainerPilot to make Service registration easier.
Splunk for log forwarding.
Datadog for metrics. (Hacked for Consul Service Discovery)
Linkerd, Styx, & dnsmasq to create a Service Mesh.
Vault for secrets

PUTTING ALL THAT TOGETHER,  
THE BASE INFRASTRUCTURE LOOKS LIKE THIS...

AND LAYERING AKIRA ON TOP OF THIS INFRASTRUCTURE.

OK. SO, LET’S GET SPECIFIC.

How does all this fit with Apache Ignite?
How did you tie the room together?

THE COMPUTE GRID & CACHE AFFINITRY.

Rely heavily on the collocation of data and computation.
Computation: Deploy the same code on every Node

Within a Docker Image using MultiPaas.

Data: Every cache uses the same Key set.
Several PARTITIONED caches
Ignite’s Affinity functions ensure all data for a given Key is on the same
Node.
We use setLocal to ensure that we either stay local or throw an
Exception.

CACHE RESILIENCY.

Keep several Backups, and allow reads from all.
2TB of data total, in Primary and Backups

Thus, we can withstand the ephemeral nature of
Nodes in the Cloud.
Yields, overall, a resilient, well-performing
system.

THE CONSUL IP FINDER. 
NODE DISCOVERY BASED ON CONSUL.

THE EXPECTED GRID SIZE MONITOR. 
HOW DO WE KNOW WHEN THE GRID IS WHOLE?

THE CACHE ENTRY UPDATE MONITOR. 
WATCHING FOR ADMIN EVENTS.

CacheEntryUpdateMonitor
Watch for updates to a single cache entry
Uses a Continuous Query
Used for various entries in the
AdminCache
Use only for low volume entries

THE AVAILABILITY ZONE (AZ) AWARE BACKUP FILTER. 
ENSURES WE CAN LOSE A WHOLE AZ.

The AzAwareBackupFilter
Plugs into the RendevouzAffinityFunction in Ignite
Balances the Backups and the Primary evenly across the AZs
Allows the full Grid to span AZs

All partitions are in all AZs, twice
Ensures we can lose an entire AZ.

Uses knowledge encoded into the ConsistentNodeId.
To determine Env, Region, and AZ

REQUEST-SCOPED TRACING. 
DEBUGGING IN A DISTRIBUTED WORLD IS HARD.

Enables debugging of complex operations where verbose logging is impractical
Registers a Jersey ContainerFilter
And a custom Logback MDCFilter
Dynamically toggles the logging level to TRACE by sending in a special Request Header.
Eventually, passes these ThreadLocal MDC flags into the ComputeJob, so we can track the Request across the
Grid
And finally, into the logs

logFormat: '[%date{"yyyy-MM-dd''T''HH:mm:ss,SSS",UTC}]\(%t\)\([%X{requestMarker}]\) %p - %logger{0} - %m%n%r'

SO. HOW'S THAT GOING FOR YOU?  
CURRENT PERFORMANCE

We are nearing our prescribed perf
numbers…

THE END.

Any questions??
(BTW: we’re hiring :~)

© 2017 HomeAway. All rights reserved.

