
IN-PERSISTENT-MEMORY
COMPUTING WITH JAVA

ERIC KACZMAREK
INTEL CORPORATION

LEGAL DISCLAIMER & OPTIMIZATION NOTICE

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES
NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.
Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

IN-MEMORY COMPUTING

Many sessions to discuss its value and approaches ☺
Definition from a quick search
“In-memory computing is the storage of information in the main random access
memory (RAM) of dedicated servers rather than in complicated relational databases operating
on comparatively slow disk drives”** - Techopedia.com

I/O

WHY NO I/O

Behind a SATA/SAS/PCIE interface
High access latencies
Low read/write bandwidth
Data stored as a stream of bytes

Is this the name/title of the interface?
If not, "interface" should be lower
case. My guess is that is should read
"Behind a SATA/SAS/PCIE interface"

TRADITIONAL STORAGE STILL RELEVANT

Cheap
High capacity
Durable

SIDE BY SIDE STORAGE AND MEMORY

Storage (HDD, SSD, NVMe) Memory (DRAM)
Capacity Terabytes Gigabytes
Durability Yes No (through software)
Access Stream of bytes Random data access
Bandwidth ~3GBps ~60GBps
Latencies Microseconds Nanoseconds

Complement each other

WHAT IF WE CAN HAVE THE BEST OF BOTH

Storage (HDD, SSD, NVMe) Memory (DRAM)
Capacity Terabytes Gigabytes
Durability Yes No (through software)
Access Stream of bytes Random data access
Bandwidth ~3GBps ~60GBps
Latencies Microseconds Nanoseconds

WHY NOT WITH A TRADITIONAL STORAGE

0

7.5

15

22.5

30

NAND MLC NVMe SSD (4kB read) DIMM Memory (64B read)

File System
Storage Stack
Driver
Platform Link xfer & protocol (NVMe/PCIe)
Controller Firmware
Controller ASIC
NVM xfer
NVM Tread

The
Media

I/O
Overhead

La
te

nc
y

(u
se

cs
)

There was a "click to add" still
showing in the background. I removed
the blank text box that was housing it.

Vincent, Amber

WHY NOT WITH A TRADITIONAL STORAGE

0

7.5

15

22.5

30

NAND MLC NVMe SSD (4kB read) DIMM Memory (64B read)

File System
Storage Stack
Driver
Platform Link xfer & protocol (NVMe/PCIe)
Controller Firmware
Controller ASIC
NVM xfer
NVM Tread

The
Media

I/O
Overhead

La
te

nc
y

(u
se

cs
) I/O performance determined by more than the NVM media,

factors like controller latency, drivers, PCI-E performance and
software stacks. Application performance will not equal the

media performance

There was a "click to add" still
showing in the background. I removed
the blank text box that was housing it.

Vincent, Amber

INTRODUCING PERSISTENT MEMORYI removed the text box with "click to
add content"

PERSISTENT MEMORY DEFINITION AND VALUE

Memory-like performance – not a DRAM replacement
Byte addressable – no DRAM footprint
Durable across applications or system restarts
Large capacity (terabytes)
Direct user mode access – no kernel code in data path

PERSISTENT MEMORY

0

7.5

15

22.5

30

NAND MLC NVMe SSD (4kB read) DIMM Memory (64B read)

The
Media

I/O
Overhead

La
te

nc
y

(u
se

cs
)

I removed the text box with "click to
add content"

Vincent, Amber

Made grey box slightly bigger for

OPEN INDUSTRY PROGRAMMING MODEL

36+ Member Companies

SNIA Technical Working Group
Defined 4 programming modes required by developers

Spec 1.0 developed, approved by SNIA voting members and published
Interfaces for PM-aware file
system accessing kernel PM

support

interfaces for application
accessing a PM-aware file

system

Kernel support for
block NVM
extensions

Interfaces for legacy
applications to access block

NVM extensions

http://snia.org/sites/default/files/NVMProgrammingModel_v1.pdf

C/C++ OPEN SOURCE NVM LIBRARY

NVDIMM

User
Space

Kernel
Space

 Application

Load/StoreStandard
File API

pmem-Aware
File System

MMU
Mappings

NVM Libraries

• Open Source: http://pmem.io
• Libpmem
• libvmem
• libvmmalloc
• libpmemobj
• libpmemblk
• libpmemlog

Transactional

http://pmem.io/
http://pmem.io/

WHAT ABOUT JAVA

Broad range of middleware developed in Java or Scala (JVM languages)
Ex: Apache Spark, Apache Cassandra, Apache Ignite, Hazelcast IMDG, etc.

Java abstracts hardware from the developer
Hooks or hardware access possible through JNI, Unsafe, etc. but

Not portable
Performance overhead (data marshaling, thread safety, etc.)
Might not be supported in future releases

EXPOSING PERSISTENT MEMORY TO JAVA

Entire Java heap in Persistent Memory
Heterogeneous Java Heap
Persistent Collections for Java (PCJ)

ENTIRE JAVA HEAP IN PERSISTENT MEMORY

Heap memory allocation on persistent memory
No code changes
java -Xmx32g -Xms16g -XX:HeapDir=/XPointFS/heap ApplicationClass

Heap memory Non-heap
memory

DRAMPersistent Memory

Ext4 DAX File System

JVM

ENTIRE JAVA HEAP IN PERSISTENT MEMORY 
USE CASES

In multi-JVM deployments to prioritize Java VMs. (ex: Oracle Fusion Apps)
Applications which can benefit from large memory
OpenJDK JEP: https://bugs.openjdk.java.net/browse/JDK-8171181

https://bugs.openjdk.java.net/browse/JDK-8171181
https://bugs.openjdk.java.net/browse/JDK-8171181
https://bugs.openjdk.java.net/browse/JDK-8171181

HETEROGENEOUS JAVA HEAP

User directed allocation
Frequently accessed objects reside in DRAM (default)
Garbage collection (G1 GC) collects both areas

Normal Heap Area Extended
Heap Area

Java Heap

MCDRAM PMDRAM

HETEROGENEOUS JAVA HEAP INTERFACE

Extended HeapArea size specified through flag –Xmp (ex: -Xmx60g -Xmp500g)
APIs for setting allocation context

 // Set the allocation target to PM

 Heap.setAllocationTarget(AllocationTarget.PM);

 HashMap user_records = new HashMap(1000000);

 // reset allocation target to DRAM.

 Heap.resetAllocationTarget();

DRAM

PM

Java Heap

Where is data persistence?

PERSISTENT COLLECTIONS FOR JAVA

Library of persistent classes
Custom persistent classes
Low-level Memory Regions

https://github.com/pmem/pcj

https://github.com/pmem/pcj

LIBRARY OF PERSISTENT CLASSES

Primitive arrays (e.g. PersistentByteArray, mutable and immutable)
PersistentArray<E extends PersistentObject> (mutable and immutable)
PersistentTuple<T1 extends PersistentObject, …> (mutable and immutable)
PersistentArrayList<E extends PersistentObject>
PersistentHashMap<K extends PersistentObject, V extends PersistentObject>
PersistentLinkedList<E extends PersistentObject>
PersistentLinkedQueue<E extends PersistentObject>
PersistentSkipListMap<K extends PersistentObject, V extends PersistentObject>
PersistentFPTreeMap<K extends PersistentObject, V extends PersistentObject>
PersistentSIHashMap<K extends PersistentObject, V extends PersistentObject>
ObjectDirectory - indefinitely reachable root map of <String, T extends PersistentObject>

Primitive types (as field and array element values, no separate class)
Boxed primitives (e.g. PersistentLong)
PersistentString
PersistentByteBuffer
PersistentAtomicReference<T extends PersistentObject>

Development in Progress

LIBRARY OF PERSISTENT CLASSES

State stored on persistent heap
Instances behave like regular Java objects, just longer-lived
Reachability-based lifetime
Easy-to-understand data consistency model (transactional)

USING PERSISTENT COLLECTIONS

PersistentIntArray data = new PersistentIntArray(1024);

ObjectDirectory.put(”MyApplicationData", data);

// no serialization, reference to array is written

data.set(0, 123);

// Restart JVM or system

PersistentIntArray data1 =
ObjectDirectory.get("MyApplicationData",PersistentIntArray.class);

assert(data.get(0) == 123);

SUPPORT FOR CUSTOM PERSISTENT CLASSES

Extending built-in persistent class
Creating a new persistent class

EXTENDING BUILT-IN PERSISTENT CLASS

public class Employee extends PersistentTuple2<PersistentLong, PersistentString> {
 public Employee(PersistentLong id, PersistentString name) {
 setId(id);
 setName(name);
 }
 public PersistentLong getId() {
 return _1();
 }
 public void setId(PersistentLong id) {
 _1(id);
 }

public PersistentString getName() {
 return _2();
 }
 public void setName(PersistentString name) {
 _2(name);
 }
 public String toString() {
 return String.format("Employee(%s, %s)", getId(), getName());
 }
}

CREATING A PERSISTENT CLASS

CREATING A PERSISTENT CLASS

LOW-LEVEL MEMORY REGIONS

Interface from OpenJDK Panama project
Get and set for byte, short, int, long (on persistent memory)
Heap API to allocate and free MemoryRegions
Developers can

Retrofit existing code at low-level
Create their own abstractions

Three versions
RawMemoryRegion -- useful for volatile use or when caller provides data consistency externally
FlushableMemoryRegion -- includes flush() method and fail-safe isFlushed() state
TransactionalMemoryRegion -- writes are transactional

APPLICATIONS OF PERSISTENT MEMORY

APPLICATIONS OF PERSISTENT MEMORY

All of In-Memory Computing Applications?

EVERYTHING SOUNDS SO EASY…

Not so…
Software innovation – new programing paradigm: “To persist or not to persist”

Think early days of the smart phone
Any write could be your last write – do you need the data when the application restarts?
More than just large memory

Existing software needs to be re-architected – to unlock features and performance
Apache Cassandra, Apache Spark

Traditional memory still in every system – applications need to be aware

CALL TO ACTION

Innovate on persistence – discover usages!!
Feedback on Java persistent programing model

JOIN THE DISCUSSION

Learn about the Persistent Memory programming model - http://www.snia.org/forums/sssi/nvmp
Join the pmem NVM Libraries Open Source project - http://pmem.io
Read the documents and code supporting ACPI 6.1 and Linux NFIT drivers

http://www.uefi.org/sites/default/files/resources/ACPI_6.1.pdf
https://github.com/pmem/ndctl
http://pmem.io/documents/
https://github.com/01org/prd

Intel Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/en-us/intel-isa-extensions

Intel 3D XPointTM Memory
https://software.intel.com/en-us/persistent-memory

https://software.intel.com/en-us/persistent-memory

http://www.snia.org/forums/sssi/nvmp
http://www.snia.org/forums/sssi/nvmp
http://pmem.io/
http://pmem.io/
http://www.uefi.org/sites/default/files/resources/ACPI_6.1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6.1.pdf
https://github.com/pmem/ndctl
https://github.com/pmem/ndctl
http://pmem.io/documents/
http://pmem.io/documents/
https://github.com/01org/prd
https://github.com/01org/prd
https://software.intel.com/en-us/intel-isa-extensions
https://software.intel.com/en-us/intel-isa-extensions
https://software.intel.com/en-us/persistent-memory
https://software.intel.com/en-us/persistent-memory
https://software.intel.com/en-us/persistent-memory

Thank You

