
Craig Gresbrink – Solutions Architect – 24 Hour Fitness

How In-Memory solutions assist with SaaS integrations

PROPRIETARY & CONFIDENTIAL

Intro

2

Craig Gresbrink
cgresbrink@24hourfit.com
Solutions Architect

mailto:cgresbrink@24hourfit.com

PROPRIETARY & CONFIDENTIAL

Intro – 24 Hour Fitness

3

24 Hour Fitness – 400+ clubs in 13 States

 - We are a leading fitness industry pioneer with nearly four million members in more than 400
clubs across the U.S. For more than 30 years, we’ve held fast to our mission of helping people
improve their lives through fitness.

PROPRIETARY & CONFIDENTIAL

What am I going to show you?

4

How In-Memory solutions assist with SaaS integrations

Agenda

• 24 Hour Fitness’ historical architecture and some limitations

• How in-memory solutions solved use cases at 24 Hour Fitness

• Issues we ran into

• How in-memory solutions might be leveraged in the future at 24 Hour Fitness

• Q &A

• Reception!

PROPRIETARY & CONFIDENTIAL

24 Hour Fitness - Historical architecture and caching

5

User
Interface

Member
Database

Service

JVM JVM

Load Balancer
(round robin load balancing)

Member’s 1st
request

Member’s 2nd request

Problem - 2nd request
queries the database and
doesn’t hit the cache

Cache member’s info
in this JVM only

We cache in each
JVM only. In our
setup there is no
guarantee which JVM
a user will hit due to
round robin load
balancing (no sticky
session).

More cache misses as
we scale (JVMs)
horizontally.

PROPRIETARY & CONFIDENTIAL

Historical architecture and caching

6

Use Case 1 - Why it won’t work for payments to a batch system

Self-Service Online Payment UI

Oracle Apps DB

Accounting Service

JVM JVM

JVM JVM

Staging
Tables

Base
Tables6. Batch every 6

hours

1. Get balance

2. Query invoice
balances

3. Pay some invoices

Payment Service
4. Charge card

5. Save receipt

Members, can pay their
bill(s) online via our
self-service customer
portal.

What happens when
they come back 2
hours after making
their payment?

We could’ve solved it
by querying the staging
tables as well as the
base tables. It would
be slow for all
customers. 99% haven’t
made a previous
payment.

PROPRIETARY & CONFIDENTIAL

A distributed cache solves our problem…

7

Hazelcast to the rescue for use case 1.

Self-Service Online Payment UI

Oracle Apps DB

Accounting Service

JVM JVM

JVM JVM

Staging
Tables

Base
Tables6. Batch every 6

hours

1. Get balance

2. Query invoice
balances

3. Pay some invoices

Payment Service
4. Charge card

5. Save receipt

What if we implement
a distributed cache
such that cache
consistency is
retained across the
JVMs so we know
which invoices have
already been paid?

Hazelcas
t

Now we can
filter out paid
invoices from
the get
balance
response.

PROPRIETARY & CONFIDENTIAL

A distributed cache solves another problem

8

Self-Service Online Payment UI

Oracle Apps DB

Accounting Service

JVM JVM

JVM JVM

Staging
Tables

Base
Tables6. Batch every 6

hours

1. Get balance on
authentication

2. Query invoice
balances if not in cache

3. Pay some invoices

Payment Service
4. Charge card

5. Save receipt

But there is another
problem, for some
customers this query
takes 40 seconds.

Hazelcast

Eagerly cache, or
pre-cache, invoice
balances.

Don’t wait ‘til
they go to the
make a payment
screen. A better
Customer
Experience (CX).

PROPRIETARY & CONFIDENTIAL

Current architecture and caching

9

Clients/UIs/
Applications

ESB

Data Services

Data Fabric (GridGain) Databases

SaaS
Services

JVM JVM

JVM

JVM JVM

JVM

JVM
GG Node

JVM
GG Node

JVM
GG Node

JVM
GG Node

JVM
GG Node

JVM
GG Node

PROPRIETARY & CONFIDENTIAL

Nirvana with HR SaaS system

10

Kids’ Club

ESB

HR SaaS
Services

2. Get employee

1. Get
employee

Life is perfect!

PROPRIETARY & CONFIDENTIAL

Use case 2: Vendor’s APIs are not 24/7, but our business is 24/7  

11

Kids’
Club

ESB

Employee Data
Services

Data Fabric
(GridGain)

HR
Database

HR SaaS
Services

1. Change detection
• New hire
• Update job/name2. Save

3. Persist
4. Cache

5. Get
employee

6. Get employee

7. Get employee

APIs are
not 24/7

PROPRIETARY & CONFIDENTIAL

Use case 2: Vendor’s APIs are not 24/7, but our business is 24/7  

12

An improved solution?

Kids’
Club UI

ESB

Employee Data
Services

Data Fabric
(GridGain)

HR
Database

HR SaaS
Services

1. Change detection
• New hire
• Update job/name

2. Save

4. Persist – write through

3. Cache

5. Get
employee

6. Get employee

7. Get employee

PROPRIETARY & CONFIDENTIAL

Use case 2: Vendor’s APIs are not 24/7, but our business is 24/7  

13

An improved, improved solution?

4. Native persistence

Kids’
Club UI

ESB

Employee Data
Services

Data Fabric
(GridGain)

HR SaaS
Services

1. Change detection
• New hire
• Update job/name

2. Save

3. Cache

5. Get
employee

6. Get employee

7. Get employee

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

14

Nirvana, finally!

Membership
Sales Online

ESB

Cloud Lead
Management

Services

2. Create lead

1. Purchase

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

15

It’s not that easy! We have to make multiple calls to LMS to create a lead…

2. Get lead origin GUID
3. Get state GUID
4. Get club GUID
5. Create lead with GUIDs

Membership
Sales Online

ESB

Cloud Lead
Management

Services

1. Purchase

Disclaimer:
Chatty APIs have been rectified
in future versions of the
product.

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

16

Data flow with GridGain
Membership
Sales Online

ESB

Cloud Lead
Management

Services

5. Create lead with GUIDs

1. Purchase

CRM Entity Data
Services

Data Fabric
(GridGain)

4. Get club team GUID

Get GUID

 Eagerly cache LMS GUIDs on startup

2. Get lead origin
GUID

3. CA GUID

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

17

Lead Management System and GUID translations in Camunda BPMN

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

18

Lead Management System and GUIDs translations – How fast is the cache?

PROPRIETARY & CONFIDENTIAL
19

1. Marshalling and class loading
• What – Historically, the free version, Apache Ignite, didn’t have the GridGain Binary Marshaller.
• Issue – Without the GridGain Binary Marshaller, our domain model classes (member, agreement etc..) would need to be loaded into

each node in the cluster, and this didn’t work when adding a node the cluster due to an issue in the version we were using.
• Solution - We created our own 24 Hour Custom Marshaller to serialize to standard java objects such that Ignite did not need our

domain model classes.
• Future – We want to move away from our 24 Hour Custom Marshaller and instead use the Binary Marshaller that is now part of Apache

Ignite.

2. Intermittent Node Connectivity
• What – We were setup with multicast and eagerly loading our employee data.
• Issue – We experienced intermittent issues with nodes not returning employee data.
• Why - Due to our network issues, nodes could not contact each other and thus nodes redistributed data. There was some data loss

depending which nodes disconnect from each other and which node a particular call went to.
• Solution - We switched to TCP/IP where each server knows about all the IP addresses of other servers in the cluster.

3. Involve other groups/teams even though it is a software solution
• Networking /Infrastructure - Alluded to above, but additionally, we had timeouts that had the same affect of nodes exiting and

rejoining the cluster.
• Operations – Instrumentation (for us Dynatrace), cache validation(Visor UI or scripts and REST APIs), reloading the cache (scripts and

REST APIs).

The road wasn’t all smooth!

Challenges…

PROPRIETARY & CONFIDENTIAL
20

Previously shown future possibilities

– Write Through
• HR Employee data with database to support legacy systems

– Native Persistence
• HR Employee data w/o database

Other ideas

– ID Generation vs. MySQL sequence
• We have a vendor that has APIs where we are expected to provide their primary key IDs
• It is a nightly batch with many rows/records so it would be nice/faster to use Ignite’s in-memory ID generation

– Utilize the distributed nature of the Data Fabric to support CSA (Continuous Service Availability)
• We currently have two data centers, and we are implementing an Active/Active solution across both data centers

– When one data center is down for maintenance we’ll utilize the other data center

Future possibilities

PROPRIETARY & CONFIDENTIAL
21

Future Possibility – Active/Active across our data centers

PROPRIETARY & CONFIDENTIAL

Future Possibility – Use Case 4: Transact while external systems are not available 
 

22

Membership
Sales Online

UI

ESB

Subscription
Data Services

Data Fabric
(GridGain)

SaaS
Subscription
Management

Services

• Ahhhh!!! Our System that
charges credit cards and
is the system of record
for subscriptions is
down!!!!

• No Problem – When the
red arrow turns green,
and the SaaS system is
operational, ESB will call
the APIs to move the data
over.

2a. Save

2c.
Cache

1.
Purchase

2b. Save(IMDG)

Native
Persistenc
e

All Apps

3. Read
subscription
and billing
data 3.1 Get

data

 3.2 Read data

Vendor has concurrency API rate limits, so use GridGain to lessen the load

PROPRIETARY & CONFIDENTIAL

Reasons why SaaS API Integrations aren’t Nirvana  

23

1. Not 24/7 (possibly specified in the contract allowing them to be down x hours per day/week/month, not that they actually are)
2. Not Performant (calls too slow, or chattiness makes business transaction too slow)
3. API Rate Limits (calls per minute or concurrency – shown below)

Type Description Default Limit
for Concurrent,
Uncompleted Requests

Retry After

Total Request Refers to UI, REST, and SOAP API requests processed under a tenant.
· API calls (REST and SOAP)

o Create
o Update
o Get
o Delete
o Generate
o Query

· UI requests (all)
Excluded from this policy
· Login API calls (REST and SOAP)

· UI login requests

40 120 seconds

This policy prevents tenants from monopolizing SaaS system resources.

Concurrent Request Limits
Each tenant has the following default concurrent request limits:

PROPRIETARY & CONFIDENTIAL
24

What have we seen?
• 24 Hour Fitness’ historical architecture and some limitations

• How in-memory solutions solved use cases at 24 Hour Fitness

• Issues we ran into, marshalling and intermittent node connectivity

• How in-memory solutions might be leveraged in the future at 24 Hour Fitness

Tidbits
• A thank you to the Target IMC Summit 2016 presenters

– Maybe you’ll be up here next year, and I’ll be watching you present!

• Careers at 24 Hour Fitness IT
– North County San Diego (Carlsbad)
– http://careers.24hourfitness.com

• A thank you to all my colleagues at 24 Hour Fitness that helped me with details in this presentation, attended my practice runs, and to
those who implemented these in-memory solutions

Summary

http://careers.24hourfitness.com/

PROPRIETARY & CONFIDENTIAL
25

Craig Gresbrink

cgresbrink@24hourfit.com
– Subject – IMC (start with IMC)

• I will do my best to respond within 2 or 3 days, for at least the next month.

Thank You!

Don’t forget to check out the next slide: References and further reading…

Questions…..

mailto:cgresbrink@24hourfit.com

PROPRIETARY & CONFIDENTIAL

References and further reading

26

Give credit, where credit is due…

• Hazelcast
– https://hazelcast.com/

• Cache-Aside Pattern
– https://blog.cdemi.io/design-patterns-cache-aside-pattern/

• You Are Not Netflix: How and When to Use Microservices in the Enterprise
– https://www.gartner.com/webinar/3437517

• Microservices vs. Service Oriented Architecture
– http://www.oreilly.com/programming/free/microservices-vs-service-oriented-architecture.csp

• Apache Ignite
– https://ignite.apache.org/

• Apache Ignite’s Read Through, Write Through, and Write Behind
– https://apacheignite.readme.io/v1.1/docs/persistent-store

• Apache Ignite Native Persistence
– https://apacheignite.readme.io/docs/distributed-persistent-store

• Camunda - an open source platform for workflow and business process management
– https://camunda.org/

• Dynatrace - an Automated Performance Management product (APM)
– https://www.dynatrace.com/

• Apache Ignite’s Binary Marshaller
– https://apacheignite.readme.io/docs/binary-marshaller

• Apache Ignite’s ID Generator
– https://apacheignite.readme.io/docs/id-generator

• GridGain’s Data Center Replication
– https://docs.gridgain.com/v8.1/docs/data-center-replication

• IMC Summit 2016 - Target’s Presentation which was my inspiration (Thank You)
– https://www.imcsummit.org/2016/videos-and-slides/targets-first-foray-into-an-in-memory-data-grid-and-the-trips-stumbles-and-falls-that-came-with/

• High performance in-memory computing with Apache Ignite (I haven’t read this but it looked good)
– https://www.amazon.com/Performance-memory-computing-Apache-Ignite/dp/1365732355/ref=sr_1_cc_1?s=aps&ie=UTF8&qid=1507758595&sr=1-1-catcorr

https://hazelcast.com/
https://blog.cdemi.io/design-patterns-cache-aside-pattern/
https://www.gartner.com/webinar/3437517
http://www.oreilly.com/programming/free/microservices-vs-service-oriented-architecture.csp
https://ignite.apache.org/
https://apacheignite.readme.io/v1.1/docs/persistent-store
https://apacheignite.readme.io/docs/distributed-persistent-store
https://camunda.org/
https://www.dynatrace.com/
https://apacheignite.readme.io/docs/binary-marshaller
https://apacheignite.readme.io/docs/id-generator
https://docs.gridgain.com/v8.1/docs/data-center-replication
https://www.imcsummit.org/2016/videos-and-slides/targets-first-foray-into-an-in-memory-data-grid-and-the-trips-stumbles-and-falls-that-came-with/
https://www.amazon.com/Performance-memory-computing-Apache-Ignite/dp/1365732355/ref=sr_1_cc_1?s=aps&ie=UTF8&qid=1507758595&sr=1-1-catcorr

PROPRIETARY & CONFIDENTIAL

Bonus slides

27

»B-SIDES

»OUTTAKES

The following slides were contemplated but didn’t make the final cut....

PROPRIETARY & CONFIDENTIAL

What is this, 2005, ESB? No Microservices?  

28

PROPRIETARY & CONFIDENTIAL

Use case 3: A chatty real-time integration with CRUD-based APIs is too slow  

29

What does lead creation look like in a visual Business Process Management System?

