HIGH AVAILABILITY AND DISASTER RECOVERY FOR IMDG

VLADIMIR KOMAROV, MIKHAIL GORELOV SBERBANK OF RUSSIA

ABOUT SPEAKERS

Vladimir Komarov

Enterprise IT Architect *vikomarov@sberbank.ru* in Sberbank since 2010. He realized the concepts of operational data store (ODS) and retail risk data mart as a part of enterprise data warehouse. In 2015 performed the testing of 10+ distributed in-memory platforms for transaction processing. Now responsible for grid-based core banking infrastructure architecture including high availability and disaster recovery.

Mikhail Gorelov Operations expert & manager magorelov@sberbank.ru

in Sberbank since 2012. He is responsible for building the infrastructure landscape for the major mission-critical applications as core banking and cards processing including new grid-based banking platform. Now he acts as both expert and project manager in "18+" core banking transformation program.

ABOUT SBERBANK

The largest bank in Russian Federation

- 16K+ offices in Russia, 11 time zones
- 110M+ retail clients
- 1M+ corporate clients
- 90K+ ATMs & POS terminals
- 50M+ active web & mobile banking users

OUR GOALS

$Availability = \frac{Total time - Downtime}{Total time} \times 100\%$

Availability	Yearly downtime	
99 %	3d 15:39:29.5	
99.9 %	8:45:57.0	
99.99 %	0:52:35.7	target for 2018
99.999 %	0:05:15.6	
99.9999 %	0:00:31.6	

OUR METHODS

- additional control and checking tools;
- monitoring improvement:
 - new metrics design;
 - new visualizations;
- continuous testing:
 - operational acceptance tests;
 - performance tests;
 - 45+ scenarios of destructive testing;
- keeping incident response plan up-to-date.

THREATS AND FACILITIES

	کیک کالے Datacenter loss	DC interconnect failure	Application bugs, admin errors	User data corruption	HW/OS/JVM failures
On-disk data persistence					\checkmark
Data redundancy	\checkmark				\checkmark
Distributed cluster	\checkmark	\checkmark			
Data snapshots			\checkmark	\checkmark	
Point-in-time recovery			\checkmark	\checkmark	
Health self-check					\checkmark
Data replication	\checkmark	\checkmark		\checkmark	

THE LEGACY GRID-ENABLED ARCHITECTURE

Application servers

In-memory data grid caching & temporary storage

Relational DBMS persistence & compute

Strengths

- Robust and stable persistence layer
- A grid hasn't to be highly available

Weaknesses

- The write performance is limited by database
- The persistence layer is not horizontally scalable
- Data need to be converted from object representation to relational model
- Database and grid can become inconsistent if data is changed directly in the database
- The database requires high-end hardware

SBERBANK CORE BANKING PLATFORM ARCHITECTURE

Application servers compute

In-memory data grid compute & data persistence

Opportunities

- Fully horizontally scalable architecture • on commodity hardware
- The data is stored as objects, • no conversion required
- The only instance of the data ٠

Challenges

- The grid has to persist the data ٠
- The grid has to be fault tolerant

SERVICE CONTINUITY THREATS

- The above tree does not consider security issues
- Application and user issues cannot be solved at platform level
- Let's focus on system issues!

THE CONCEPT OF SERVICE PROVIDER INTERFACE (SPI)

API vs. SPI

	API	SPI
Defined by	Platform	Platform
Implemented by	Platform	System software (custom code)
Called by	Application (custom code)	Platform

Sberbank implements GridGain SPI:

TopologyValidator AffinityFunction

THE CONCEPT OF AFFINITY

THE CONCEPT OF CELL; NEW AFFINITY FUNCTION

Broken node:

more nodes in the cluster \rightarrow faster recovery

Semi-broken node:

more linked nodes \rightarrow stronger performance impact

Find a balance!

Sberbank's affinity implementation

- The grid is distributed across 2 datacenters.
- Data connectivity is **limited to 8 nodes (a cell)**.
- Every partition has the master copy and 3 backups.
- Each datacenter has 2 copies of a partition.
- Both datacenters are active.

SBERBANK CORE BANKING INFRASTRUCTURE

- Nodes of a cell reside in different racks.
- Clos network provides stable high-speed connectivity.
- **Doubled datacenter interconnect** reduces split-brain probability.
- Every server contains NVMe flash and HDDs.

DC₂

LET'S SPEAK ABOUT NETWORK FRAGMENTATION...

Regular operation

Fragmentation type 1

Datacenter loss

Fragmentation type 2

DC interconnect loss

Fragmentation type 3

HOW DOES GRIDGAIN RECOVER A BROKEN CLUSTER?

LET'S OVERRIDE DEFAULT TOPOLOGY VALIDATOR!

Check if
the previous topology was valid
either the new nodes appear or not more than N nodes lost

Check

1. there are nodes from DC1

All
Partial
None

2. there are nodes from DC2

All
Partial
None

3. data is integral (no partition loss happens)

Yes
No

Decisions possible:

- RW (read-write): continue normal operation
- AW (admin wait): freeze the cluster and wait for admin interaction

DECISION AUTOMATION USING QUORUM NODE

LOCAL FILE STORE (LFS)

BACKUP SUBSYSTEM

Current

- Snapshot to local disk (full/incremental/differential)
- Snapshot catalog inside the data grid
- Copying to NAS using NFS
- Restoring on arbitrary grid topology

Future

- Point-in-time recovery using snapshot and WAL;
- External backup catalog in relational DBMS;
- Copying to SDS using S3/SWIFT;
- ...and more!

THANK YOU!

Vladimir Komarov <u><vikomarov@sberbank.ru</u>>

Mikhail Gorelov <a href="mailto:

