
THE IOT APPLICATION

CHALLENGE
HANDLING MASSIVE STREAMING DATA

COLIN MACNAUGTHON

NEEVE RESEACH

 Headquartered in Silicon Valley

 Creators of the X Platform™- Memory Oriented

Application Platform.

 Passionate about high performance computing.

 Running in production at Fortune 100-300

WHO IS NEEVE RESEARCH?

AGENDA

What is IoT … What are the Challenges?

How The X Platform tackles Streaming

 Streaming Usecase: IoT Fleet Tracking

WHAT IS IOT

The “Internet of Things”:

“real world” stuff (often augmented with sensors)

streaming data to a network

WHAT WE ARE REALLY TALKING ABOUT IS:

LARGE SCALE STREAMING

WHAT IS NEEDED FOR IOT

EVENT-DRIVEN

Its all about streaming lots of events

SCALABILITY

Lots of things LOTS of events

SPEED

100s of thousands to millions of events/sec, response latency in microseconds or low millis.

RELIABILITY

CANNOT lose mission critical events No Dups / No Loss (Exactly Once)

AVAILABILITY

Always On, Always available in the face of network/process/machine/data center failure

AGILITY/EASE

Applications are infinite need to be able to evolve organically

>

>

>

>

>

>

STREAMING APP CHARACTERISTICS

What do they do?

1. Consume Inbound Messages

2. Read / Update State

3. … and Produce Outbound Messages

Data Store

Outbound Message StreamsInbound Message Stream(s)

• Customer Traffic

• Apps: Spark, Kafka …

• Datasources: Flat files, RDBS

etc.

• Devices (IoT)

State CRUD

Compute

Order Manager

Shipping

Risk Analysis

MICROSECONDS MATTER

A processing time of 1ms limits your throughput to 1000 messages / sec.

Same applies to any synchronous callouts in the stream.

To achieve >10k Transactions/Second you must leverage In Memory technologies

MICROSECONDS MATTER

Memory Latency

L1 Cache ~1ns

L2 Cache ~3ns

L3 Cache ~12ns

Remote NUMA Node ~40ns

Main Memory ~100ns

Network Read 100μs

Random SSD Read 4K 150μs

Data Center Read 500μs*

Mechanical Disk Seek 10ms

Non Starters For Performance

We’re Talking About!

Sources: https://gist.github.com/jboner/2841832

http://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html

All State in Memory All The Time!

MEMORY ORIENTED COMPUTING!

THE CHALLENGES

 Exactly Once Semantics

 Messaging – No Loss / No Dups / Atomic

 Storage and Access to State – No Loss / No Dups

 Atomicity between Message Streams and State Updates – Receive-Process-Send

atomic

Data Store

Process
App Messages

AcksAcks

Messages

! How long until app can process the

next event?

! !

TRADITIONAL TP APPLICATION ARCHITECTURE

Relational Database
Data Tier

(Transactional State

Reference Data)

Application Tier

(Business Logic)

Messaging

(HTTP, JMS)

➢ Slow

➢ Complex

➢ Does not scale with size or

volume

➢ Synchronous

➢ Slow

➢ Poor Routing

➢ Ordering Complexity

(Choke Point!)

Wrong Scaling

Strategy

➢ Slow

➢Durable

➢Consistent

➢Does Not Scale

➢Complex
Load Balanced,

Sticky Routing

LAUNCH DATA INTO MEMORY

Data Tier

(Transactional State

Reference Data)

Application Tier

(Business Logic)

Messaging

(HTTP, JMS)

➢ Better but still slower than memory

➢ Simpler but still not pure domain

➢ Does not scale with size

➢ Synchronous

➢ Slow

➢ Poor Routing

➢ Complex Ordering

(Choke Point … still!)

Wrong Scaling

Strategy

➢ Slow

➢Durable

➢Consistent

➢Does Not Scale

➢Complex

In-Memory Replicated

DATA GRAVITY

(DATA STRIPING + SMART ROUTING)

Data Tier

(Transactional State

Reference Data)

Application Tier

(Business Logic)

Messaging

(Publish -Subscribe)

➢ Better but still slower than memory

➢ Simpler, but not “pure” data model

➢ Scales with size and volume

(Optimal ?)

➢ Slow

➢Durable

➢Consistent

➢ Scales

➢Agile

➢Complex

In-Memory Replicated + Partitioned

Smart Routing

(messaging traffic partitioned to align with data partitions)

Processing Swim-lanes (ordered)

Solace, Kafka, Falcon, JMS 2.0…

WHY STILL SLOW AND COMPLEX

 How Slow?

 Latency

 10s to 100s of milliseconds

 Throughput

 Very low with single pipe

 Few 1000s per second with high concurrency

 Why Still Slow?

 Remoting out of process

 Synchronous data management and stabilization

 Concurrent transactions are not cheap!

 Why Complex?

 Transaction Management still in business logic

 Thread management for concurrency (only way to scale)

 Data transformations due to lack of structured data models

THE X PLATFORM APPROACH

Application + Data

Tier!

Messaging

(Publish -Subscribe)

➢ Fast

➢Durable

➢Consistent

➢ Scales

➢ Simple

In Application Memory Replicated + Partitioned

Smart Routing

(messaging traffic partitioned to align with data partitions)

Processing Swim-lanes

➢ Operate at memory speeds

➢ Plumbing free domain

➢ Scales with size and volume

Application State fully

in Local Memory

Single-Threaded

Dispatch

Pipelined

Replication

“Pure”

business

logic

Hot BackupPrimary

Solace, Kafka, Falcon, JMS 2.0…

X PLATFORM TRANSACTION PIPELINING (HA)

X

Outbound Message StreamsInbound Message Stream

X

Primary

Backup

1

2

3

4

4

5

Receive

Process

Replicate State Changes

Send Out / Ack

Inbound Acks

1

2

3

4

5

✓ State as Java

✓ Messages as Java

✓ State 100% In Memory

✓ Zero Loss or Duplication

✓ Pipelined Replication

✓ Async Journaling

✓ Pipelined Messaging

✓ Pooling for Zero Garbage

Journal

Storage

Application Handlers

1 2 …

Journal

Storage

1 2 …

NOW WHAT IS THE PERFORMANCE?

 How Fast?

 Latency

 10s of microseconds to low milliseconds

 Throughput

 100s of thousands of transactions per second

 How Easy?

 Model Objects and State in XML, generated into Java objects and collections.

 Annotate methods as event handlers for message types.

 Single threaded processing

 Work with state objects treating memory as durable.

 Send outbound messages as “Fire And Forget”

 Shard applications by state, messages routed to right app.

RELIABILITY – EXTERNAL DATA STORES

In-memory
storage

Application Logic
(Message Handlers)CDC Engine

Data

Warehouse

In-memory
storage

Application Logic
(Message Handlers) CDC Engine

Pure Memory-Oriented Processing

Backup (hot)Primary

Asynchronous Change Data Capture

Consistent, Optionally Conflated

Asynchronous

(i.e. no impact on system throughput)

Messaging Fabric

Single Threaded, Non Blocking

Asynchronous,

Guaranteed

Messaging
1 2 … 1 2 …

Always Local State,

No Remote Lookup, No

Contention

Messaging Only

In Active Role

Inter Cluster

Replication (Async)

(Remote Data Center

Disaster Recovery)

STREAMING APPS ON THE X PLATFORM

✓Message Driven

✓ Stateful

✓Multi-Agent

✓Totally Available

✓Horizontally Scalable

✓Ultra Performant

USE CASE - IOT

Building a Fleet Tracking System

with

The X Platform

IMPLEMENTING GEOFENCING

 We have a fleet of vehicles.

▪ (cars, trucks, whatever)

 Each vehicle Should be following a route defined by Administrators

 Our Fleet Management System needs to:

▪ Track location of vehicles to ensure routes are being followed.

▪ If a vehicle leaves its route, trigger alerts.

FLEET GEOFENCING

Journal Based Storage

V E H I C L E M A S T E R

V E H I C L E

E V E N T P R O C E S S O R

V E H I C L E

A L E R T R E C E I V E R

V E H I C L E

E V E N T G A T E W A Y

In-Memory State

From Vehicles

Admin

THE CODE

Pure Business Logic – Exactly Once Processing

Message
Pkain Old Java Object
Generated from XML Model

Messaging
Annotation based handler discovery,
Single Threaded

State Management
Plain Old Java objects and Java
Collections

State Management
Object Pooling and
Preallocation for Zero Garbage

Messaging
Create and populate
“Fire and Forget”

State Management
Plain Old Java Objects
Generated from XML Model

State Management
State Changes transparently
Replicated to Hot
Backup and/or Disk Based Journal

IOT FLEET GEOFENCING

Location Updates Events/sec: >130k
Single Shard, 1 Processor Core, Replicated.

1ms Response Time.
Full HA (Replicated), Exactly Once

WHY X?

 Easy to Build

 Focus on domain

 Pure Java

 Easy to Maintain

 Pristine domain

 No infrastructure bleed

 Easy to Support

 Stock hardware

 Small Footprint

 Simple abstractions

 Easy tools

 Very, very fast

✓ No Compromise
Agility, Availability, Scalability, Performance

Getting Started Guide

https://docs.neeveresearch.com

Get the Demo Source

https://github.com/neeveresearch/nvx-apps

We’re Listening

contact@neeveresearch.com

GETTING STARTED WITH X PLATFORM™

https://docs.neeveresearch.com/
https://github.com/neeveresearch/nvx-apps
mailto:contact@neeveresearch.com

QUESTIONS

