

Real-Time Image Recognition

Nikita Shamgunov, CEO, MemSQL

In-Memory Computing Summit 2017

The future of computing is visual

and also numerical :)

Putting image recognition to work today

Capture your product

٠

How It Works

Real-Time Image Recognition Workflow

- Train the model with Spark, TensorFlow, and Gluon
- Use the Model to extract feature vectors from images
 - Model + Image => FV
- You can store every feature vector in a MemSQL table

```
CREATE TABLE features (
id bigint(11) NOT NULL AUTO_INCREMENT,
image binary(4096) DEFAULT NULL,
KEY id (id)USING CLUSTERED COLUMNSTORE
```


Working with Feature Vectors

For every image, we store an ID and a normalized feature vector in a MemSQL table called features.

ID | Feature Vector

x | 4KB

To find similar images, we use this SQL query

SELECT		
id		
FROM		
features		
WHERE		
<pre>DOT_PRODUCT(feature * <input/></pre>	•) >	0.9

Understanding Dot Product

- Dot Product is an algebraic operation
 - SUM(Xi*Yi) TODO: Put a formula
- With the specific model and normalized feature vectors DOT PRODUCT results in a similarity score
 - The closer the score is to 1 the more similar are the images

Performance Enhancing Techniques

Achieving best-in-class Dot Product implementation

- SIMD-powered
- Data compression
- Query parallelism
- Scale out

Result: Processing at Memory Bandwidth Speed

Performance Numbers

- Memory Speed: 50GB/sec
- Each vector 4K
- 12.5 Million Images a second per node or
- 1 Billion images a second on 100 node cluster

Demo Architecture

SELECT id FROM features WHERE DOT_PRODUCT(image, 0xa334efa...)

About MemSQL

MemSQL: The Real-Time Data Warehouse

- Scalable
 - Petabyte scale
 - High concurrency
 - System of record
- Real-time
 - Operational
- Compatible
 - ETL
 - Business Intelligence
 - Kafka
 - Spark

- Deployment
 - MemSQL Cloud
 - Any public cloud
 - On-premises
- Developer Edition
 - Unlimited scale
 - Limited high availability and security features

2017 Magic Quadrant for Data Management Solutions for Analytics

About ML Training

ML training is available through a variety of frameworks, including Spark MLlib, TensorFlow, Gluon, and Caffe.

Caffe

Understanding ML Frameworks and MemSQL

ML Frameworks

Fast, large scale General processing engines Great for training MemSQL

Fast, large scale Real-time data warehouse Great for real-time scoring

Example: MemSQL Spark Connector

Highly parallel, high throughput, bi-directional

Thank you!

@NikitaShamgunov

www.memsql.com