
In-Memory Computing Summit

1

Greg Luck
@gregrluck

2

© 2017 Hazelcast Inc. Confidential & Proprietary

What is Jet?
A general purpose distributed data processing engine

built on Hazelcast and based on directed acyclic graphs
(DAGs) to model data flow.

DISTRIBUTED COMPUTING.SIMPLIFIED.

© 2017 Hazelcast Inc. Confidential & Proprietary

Why?

• Build a much faster engine than the industry has seen

• Better address IoT and streaming use cases than by using the
computational capabilities within Hazelcast
(IExecutorService, EntryProcessor, JobTracker, …)

• Provide a distributed java.util.stream and java.util.function
implementation to get Java programmers started

• Relatively easy for us to do by OEMing Hazelcast IMDG

• Unifying IMDG and advanced data processing capabilities

© 2017 Hazelcast Inc. Confidential & Proprietary

Hazelcast Jet Overview

4

© 2017 Hazelcast Inc. Confidential & Proprietary

Stream and Batch Processing

Maps, Caches
and Lists

Databases

IoT

Custom
Connector

Enterprise
Applications

Hazelcast IMDG

HDFS

Stream

Stream

Stream

Batch &
Stream

Batch

Ingest

Alerts

Enterprise
Applications

Interactive
Analytics

Hazelcast IMDG
Maps, Caches,
Lists

Output

Databases/
Enrichment

© 2017 Hazelcast Inc. Confidential & Proprietary

Jet is a DAG Processing Engine

6

© 2017 Hazelcast Inc. Confidential & Proprietary

Example: Word Count

If we lived in a single-threaded world, before java.util.stream:

1. Iterate through all the lines

2. Split the line into words

3. Update running total of counts with each word

final String text = "...";
final Pattern pattern = Pattern.compile("\\s+");
final Map<String, Long> counts = new HashMap<>();

for (String word : pattern.split(text)) {
counts.compute(word, (w, c) -> c == null ? 1L : c + 1);

}

© 2017 Hazelcast Inc. Confidential & Proprietary

Source Sink

Still single-threaded execution:
each Vertex is executed in turn sequentially,

wasting the CPU cores

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals
Once everything is finished,

emit all pairs of (word, count)

(text) (word) (word, count)

We can represent the computation as a DAG

© 2017 Hazelcast Inc. Confidential & Proprietary

Source
(text) (word)

Sink
(word, count)

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals.
Once everything is finished,

emit all pairs of (word, count)

By introducing concurrent queues between the vertices
we enable each vertex to run concurrently

© 2017 Hazelcast Inc. Confidential & Proprietary

Sink
(word, count)

Accumulate

We can parallelize the Tokenize step by dividing
the text into lines, and using multiple threads,

thus using even more CPU cores concurrently.

Source

Tokenize

Tokenize

© 2017 Hazelcast Inc. Confidential & Proprietary

(word)

(word)

Source Sink

Tokenize

We only need to ensure the same words
go to the same Accumulator.

The Accumulator vertex can also be executed
in parallel by partitioning the accumulation

step by the individual words.

Tokenize

Accumulate

Accumulate

© 2017 Hazelcast Inc. Confidential & Proprietary

Node

Node

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

This is what Jet does.

© 2017 Hazelcast Inc. Confidential & Proprietary

Hazelcast Jet Key Competitive Differentiators

13

• High Performance | Industry Leading Performance

• Works great with Hazelcast IMDG | Source, Sink, Enrichment

• Very simple to program | Leverages existing standards

• Very simple to deploy | embed 10MB jar or Client Server

• Works in every Cloud | Same as Hazelcast IMDG

• For Developers by Developers | Code it

© 2017 Hazelcast Inc. Confidential & Proprietary

Performance - Throughput

© 2017 Hazelcast Inc. Confidential & Proprietary

Latency

© 2017 Hazelcast Inc. Confidential & Proprietary

Performance - ForkJoin

• Jet is faster than JDK’s j.u.s implementation. The issue is in the JDK the
character stream reports "unknown size" and thus it cannot be parallelised.

• If you first load the data into a List in RAM then run the JDK’s j.u.s it comes out
a little faster

© 2017 Hazelcast Inc. Confidential & Proprietary

Jet Application Deployment Options

IMDG IMDG

• No separate process to manage
• Great for microservices
• Great for OEM
• Simplest for Ops – nothing extra

Embedded

Application

Java API

Application

Java API

Application

Java API

Java API

Application

Client-Server

Jet

Jet Jet

Jet

Jet Jet

Java API

Application

Java API

Application

Java API

Application

• Separate Jet Cluster
• Scale Jet independent of Applications
• Isolate Jet from Application Server Lifecycle
• Managed by Ops

© 2017 Hazelcast Inc. Confidential & Proprietary

Jet with Hazelcast Deployment Choices

Jet	Compute
Cluster

Hazelcast	
IMDG	Cluster

Sink Enrichment

Message
Broker
(Kafka)

Data
Enrichment

HDFS

Jet	Cluster
Sink

Source	/
Enrichment

Good when:
• Where source and sink are primarily Hazelcast
• Jet and Hazelcast have equivalent sizing needs

Good when:
• Where source and sink are primarily Hazelcast
• Where you want isolation of the Jet cluster

© 2017 Hazelcast Inc. Confidential & Proprietary

APIs

© 2017 Hazelcast Inc. Confidential & Proprietary

APIs

© 2017 Hazelcast Inc. Confidential & Proprietary

Pipeline API

• General purpose, declarative API which is both powerful and
simple to use.

• Recommended as the best place to start using Jet

• Supports fork, join, cogroup, map, filter, flatmap, reduce,
groupby

• Works with all sinks and sources

• Is a DSL which is put through a planner and converted to
DAG plan for execution.

• Batch and Streaming (window support in 0.6)

• See https://github.com/hazelcast/hazelcast-jet-code-samples

© 2017 Hazelcast Inc. Confidential & Proprietary

Pipeline API Code Sample

JetInstance jet = Jet.newJetInstance();
Pattern delimiter = Pattern.compile("\\W+");
Pipeline p = Pipeline.create();
p.drawFrom(Sources.<Long, String>readMap(BOOK_LINES))

.flatMap(e -> traverseArray(delimiter.split(e.getValue().toLowerCase())))

.filter(word -> !word.isEmpty())

.groupBy(wholeItem(), counting())

.drainTo(Sinks.writeMap(COUNTS));
Job job = jet.newJob(p);
job.join();

© 2017 Hazelcast Inc. Confidential & Proprietary

Distributed java.util.stream API

• Jet adds distributed support for the java.util.stream API for
Hazelcast Map, List and Cache.

• Supports all j.u.s. operations such as:

• map(), flatMap(), filter(), reduce(), collect(), sorted(), distinct()

• Lambda serialization is solved by creating Serializable versions
of the interfaces

• j.u.s streams are converted to Processor API (DAG) for execution

• Strictly a batch processing API

• Easiest place to start, but we recommend the Pipeline API to exploit
all features of Jet

• See https://github.com/hazelcast/hazelcast-jet-code-samples

© 2017 Hazelcast Inc. Confidential & Proprietary

j.u.s API

JetInstance jet = Jet.newJetInstance();
Jet.newJetInstance();
IStreamMap<Long, String> lines = jet.getMap("lines");

Map<String, Long> counts = lines
.stream()
.flatMap(m ->

Stream.of(PATTERN.split(m.getValue().toLowerCase())))
.filter(w -> !w.isEmpty())
.collect(DistributedCollectors.toIMap(”counts", w -> w,

w -> 1L, (left, right) -> left + right));

© 2017 Hazelcast Inc. Confidential & Proprietary

DAG API – Powerful, Low Level API

DAG describes how vertices are connected to each other:
DAG dag = new DAG();
// nil -> (docId, docName)
Vertex source = dag.newVertex("source", readMap(DOCID_NAME));
// (docId, docName) -> lines
Vertex docLines = dag.newVertex("doc-lines",

nonCooperative(flatMap((Entry<?, String> e) ->
traverseStream(docLines(e.getValue()))))

);
// line -> words
Vertex tokenize = dag.newVertex("tokenize",

flatMap((String line) -> traverseArray(delimiter.split(line.toLowerCase()))
.filter(word -> !word.isEmpty()))

);
// word -> (word, count)
Vertex accumulate = dag.newVertex("accumulate", accumulateByKey(wholeItem(),

AggregateOperations.counting()));
// (word, count) -> (word, count)
Vertex combine = dag.newVertex("combine", combineByKey(AggregateOperations.counting()));
// (word, count) -> nil
Vertex sink = dag.newVertex("sink", writeMap("counts"));

return dag.edge(between(source.localParallelism(1), docLines))
.edge(between(docLines.localParallelism(1), tokenize))
.edge(between(tokenize, accumulate).partitioned(wholeItem(), HASH_CODE))
.edge(between(accumulate, combine).distributed().partitioned(entryKey()))
.edge(between(combine, sink));

© 2017 Hazelcast Inc. Confidential & Proprietary

Building Custom Processors

• Unified API for sinks, sources and intermediate steps

• Not required to be thread safe

• Each Processor has an Inbox and Outbox per inbound and outbound edge.

• Two main methods to implement:

boolean tryProcess(int ordinal, Object item)

- Process incoming item and emit new items by populating the outbox

boolean complete()

- Called after all upstream processors are also completed. Typically used for
sources and batch operations such as group by and distinct.

• Non-cooperative processors may block indefinitely

• Cooperative processors must respect Outbox when emitting and yield if
Outbox is already full.

© 2017 Hazelcast Inc. Confidential & Proprietary

Hazelcast Jet Architecture

© 2017 Hazelcast Inc. Confidential & Proprietary

Core API

java.util.stream
(Batch Processing)

Batch Readers and Writers
(Hazelcast IMDG IMap, ICache & IList, HDFS, File)

Batch Processing
(Aggregations, Join)

Pipeline API
(Stream and Batch Processing)

Streaming Readers and Writers
(Kafka, FileWatcher, Socket, IMap & ICache streamer)

Stream Processing
(Tumbling, Sliding and Session Windows)

Hazelcast Jet Architecture

Networking
(IPv4, IPv6)

Deployment
(On Premise, Embedded, AWS, Azure, Docker, Pivotal Cloud Foundry)

Data Structures
(Distributed Map, Cache, List)

Partition Management
(Members, Lite Members, Master Partition, Replicas, Migrations, Partition Groups, Partition Aware)

Job Management
(Jet Job Lifecycle Management, Resource Distribution and Deployment)

Execution Engine
(Distributed DAG Execution, Processors, Back Pressure Handling, Data Distribution)

Cluster Management with Cloud Discovery SPI
(Apache jclouds, AWS, Azure, Consul, etcd, Heroku, IP List, Kubernetes, Multicast, Zookeeper)

Java Client

Fault-Tolerance
(System state snapshots, Recovery after failure, At-least once or Exactly once)

Connectors

High-Level APIs

Processing

Core

© 2017 Hazelcast Inc. Confidential & Proprietary

jet-core

• Provides low-latency and high-throughput distributed
DAG execution

• Hazelcast provides clustering, partitioning, discovery,
networking and serialization

• Each vertex in the graph is represented by Processors

• Vertices are connected by Edges.

• Processors are executed by Tasklets, which are allocated
to threads.

© 2017 Hazelcast Inc. Confidential & Proprietary

Processors

• Main work horse of a Jet application – each vertex must
have corresponding Processors

• Just Java code

• It typically takes some input, and emits some output

• Also can act as a Source or a Sink
• Convenience processors for: map, filter, flatMap,

groupByKey, coGroup, hashJoin and several others

© 2017 Hazelcast Inc. Confidential & Proprietary

DAG Execution

• Each node in the cluster runs the whole graph

• Each vertex is executed by a number of Tasklets which
correspond to the processors.

• Bounded number of execution threads (typically system
processor count)

• Back Pressure is applied between vertices

© 2017 Hazelcast Inc. Confidential & Proprietary

Cooperative Multithreading

• Similar to green threads

• Tasklets run in a loop serviced by the same native thread.
- No context switching.
- Almost guaranteed core affinity

• Each tasklet does a small amount of work at a time (<1ms)

• Cooperative tasklets must be non-blocking.

• Each native thread can handle thousands of cooperative tasklets

• If there isn’t any work for a thread, it eventually backs off to a
ceiling of 1ms to save CPU

© 2017 Hazelcast Inc. Confidential & Proprietary

Cooperative Multithreading

• Edges are implemented by lock-free single producer, single
consumer queues
- It employs wait-free algorithms on both sides and avoids
volatile writes by using lazySet.

• Load balancing via back pressure

• Tasklets can also be non-cooperative, in which case they have a
dedicated thread and may perform blocking operations.

© 2017 Hazelcast Inc. Confidential & Proprietary

Producer
Tasklet 3

Producer
Tasklet 4

Producer
Tasklet 4

Producer
Tasklet 2

Consumer
Tasklet 2

Consumer
Tasklet 1

Producer
Tasklet 4

Producer
Tasklet 2

Producer
Tasklet 1

Consumer
Tasklet 2

Consumer
Tasklet 1

Producer
Tasklet 1

Consumer
Vertex

Producer
Vertex

Edge

Parallelism=4

Output of Producer Vertex is
connected to the input of the

Consumer Vertex by
configuring an Edge

between them.

Thread 1 Thread 2

Execution in Each Node

Tasklets – Unit of Execution

Parallelism=2

Parallelism setting controls how many tasklets are created
on each Vertex. Default is number of cores

© 2017 Hazelcast Inc. Confidential & Proprietary

Edges

• Different types of edges:
- Unicast – pick any downstream processor
- Broadcast – emit to all downstream processors
- Partitioned – pick based on a key

• Vertices can have more than one input: allows joins and co-
group

• Vertices can have more than one output: splits and
branching

• Edges can be local or distributed

© 2017 Hazelcast Inc. Confidential & Proprietary

Data Input and Output

Sources and Sinks for:
• Hazelcast Icache (Jcache), (batch and streaming of

changes)
• Hazelcast Imap (batch and streaming of changes)

• Hazelcast Ilist (batch)

• HDFS (batch)

• Kafka (streaming)

• Socket (text encoding) (streaming)

• File (batch)

• FileWatcher (streaming – as new files appear)

• Custom, as sources and sinks are blocking Processors.

© 2017 Hazelcast Inc. Confidential & Proprietary

Stream Processing

• Support for events arriving out of order via Watermarks

• Sliding, Tumbling and Session window support

© 2017 Hazelcast Inc. Confidential & Proprietary

Job Management & Fault Tolerance

• Job state and lifecycle saved to IMDG IMaps and benefit
from their performance, resilience, scale and persistence

• Automatic re-execution of part of the job in the event of a
failed worker

• Tolerant of loss of nodes, missing work will be recovered
from last snapshot and re-executed

• Cluster can be scaled without interrupting jobs – new jobs
benefit from the increased capacity

• State and snapshots can be persisted to resume after cluster
restart

© 2017 Hazelcast Inc. Confidential & Proprietary

Processing Guarantees

Guarantee Snapshots Performance

None No Fastest

At-Least	Once Yes Slower

Exactly-Once Yes Slower

© 2017 Hazelcast Inc. Confidential & Proprietary

Questions?
Version 0.5 this week

http://jet.hazelcast.org

Minimum JDK 8

