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• Dr. William Bain, Founder & CEO of ScaleOut Software: 
• Email: wbain@scaleoutsoftware.com 
• Ph.D. in Electrical Engineering (Rice University, 1978) 
• Career focused on parallel computing – Bell Labs, Intel, Microsoft 
• 3 prior start-ups, last acquired by Microsoft and product now ships as 

Network Load Balancing in Windows Server 
   

• ScaleOut Software develops and markets In-Memory Data 
Grids, software for: 

• Scaling application performance with  
in-memory data storage 

• Analyzing live data in real time with  
in-memory computing 

• Twelve years in the market; 440+ customers, 11,000+ servers

About the Speaker
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Basic Stream-Oriented Architecture
Stream-oriented platforms typically create a computing pipeline from data 
sources to sinks: 
• Pipeline stages perform transformations often described by programming models as a sequence 

of extension methods. 
• Usually access state data (in-memory and/or persistent) using an optional, separate storage tier. 

• Examples: Apama (CEP), Apache Storm, Spark Streaming, Beam, and Flink

4

Pipeline model

Optional state
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Complex Event Processing Architecture

• Example: Apama from Software AG 
• Architecture (the Apama “Correlator”): 

• HyperTree: matches and filters incoming  
events 

• Temporal Sequencer: finds real-time  
correlations between events 

• Stream Processor: executes analytics on  
windows of events 

• Programs can be written in EPL or Java; simple example of stock tracking in 
EPL:

monitor PriceRise{
    StockTick firstTick, finalTick;
    action onload() {
        on StockTick (symbol=“IBM”, price>210.5):firstTick {furtherRise();}
    action furtherRise() on StockTick (symbol=“IBM”, 
price>firstTick.price*1.05):finalTick
        {send PlaceSellOrder(“IBM”, 100.0 to “Market”);}Illustration and code sample from “The Apama Platform,” 

Software AG
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Two Apache Platforms for Stream Processing

Task-parallel: Data-parallel (micro-
batched):
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Stream Processing Model from Apache Beam

• Originally developed by Google. 
• Provides unified, portable APIs for batch and stream processing. 
• Relies on external execution platforms called “runners”  

(e.g., Apache Flink, Spark, Google Cloud Dataflow). 
• Key elements: 

• Pipeline: data processing job as a directed set of steps 
• PCollection: the data inside a pipeline 
• Ptransform: an execution step in the pipeline (e.g., ParDo) or an IO step

Illustration from “Introduction to Apache Beam” by JB 
Onofre’
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Apache Beam Code Examples (Java)

• Basic Dataflow model:

Pipeline p = Pipeline.create(); // create a pipeline
p.apply(TextIO.Read.from(“/path/to/…”) // read input
 .apply(new CountWords()) // do some processing
 .apply(TextIO.Write.to(“/path/to/…”); // write output
p.run(); // run the pipeline

• Example of advanced features (session windows):

Pcollection<KV<String, Integer>> scores = input
 .apply(Window.into(SessionWindows.of(Duration.standardMinutes(2))
        .triggering(AtWatermark()
            .withEarlyFirings(
                AtPeriod(Duration.standardMinutes(1)))
            .withLateFirings(AtCount(1)))
        .accumulatingFiredPanes())
 .apply(Sum.IntegersPerKey());

Code samples from “Introduction to Apache Beam” by JB 
Onofre’
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Apply transform

Analyze

Simple example
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Stream Processing with Apache Flink

• Flink data flow: 

• Flink architecture:

Data 
Stream Operation Data 

StreamSource Sink

Illustrations from “Apache Flink: What, How, Why, Who, Where?” by Slim 
Baltagi
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How In-Memory Data Grids Differ

IMDGs focus on integrating computing with state (vs. processing data streams 
with optional external state): 
• IMDG provides scalable, hi-av storage for live data: 

• Stores and manages live state with object-oriented model: 
• Sequentially consistent data shared by multiple clients 
• Object-oriented collections by type 
• CRUD APIs for data access as key/value pairs 
• Distributed query by object properties 

• Has fast (<1 msec.) data access and updates 
• Designed for transparent scalability and high availability: 

• Automatic elasticity and load-balancing 
• Automatic data replication, failure detection, recovery 

• IMDG integrates in-memory computing with  
data storage: 

• Leverages the computing power of commodity servers. 
• Computes where the data lives to avoid network bottlenecks.

Logical 
view

Physical 
view

10

Storage Model
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Adding In-Memory Computing to an IMDG

• Each grid host runs a worker 
process which executes 
application-defined 
methods. 

• The set of worker processes is 
called an invocation grid. 

• IG usually runs language-
specific runtimes (JVM, .NET). 

• IMDG can ship code to the IG 
workers. 

• Key advantages: 
• Avoids network bottlenecks by 

moving computing to the data. 
• Leverages IMDG’s cores & 

hosts. 
• Isolates application code from 

grid service.

Invocation Grid

11

In-Memory Data 
Grid
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IMDGs Perform Both Stream and Batch Processing

• IMDG leverages object-oriented storage model to execute methods on instances of 
stored objects. 

• IMDG naturally integrates both stream-based and batch execution models: 
• Stream-based: execute method(s) on independent objects and sequentially on the same 

object. 
• Batch: execute a data-parallel method on a collection of objects. 
• Result: an implementation of the HTAP architecture

Stream-based 
execution

Batch (data-parallel) 
execution
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Example of Combining Streaming and Batch

An Ecommerce site  
tracking web shoppers: 
• IMDG manages clickstreams 

from shoppers by calling  
methods on individual 
objects to process click 
events. 

• Can immediately track 
shopper’s actions. 

• IMDG performs data-
parallel, batch analytics on 
grid data to track 
aggregate trends. 

• Can determine best selling 
products, average basket 
size, etc.
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Executing Multiple, Independent Requests

Method execution runs 
independently for multiple objects: 
• IMDG handles streaming requests  

from a single client. 
• Also handles multiple clients in 

parallel.
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Executing a Data-Parallel Method

Method execution implements a 
batch job on an object 
collection: 
• Client runs a single method on 

multiple objects distributed 
across the grid. 

• Results optionally are merged 
and returned to the client.
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Basic Data-Parallel Execution Model

A fundamental model 
from parallel 
supercomputing: 
• Run one method 

(“eval”) in parallel 
across many data items. 

• Optionally merge the 
results. 

• Binary combining is a 
special case, but… 

• It runs in logN time to 
enable scalable speedup.
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MapReduce Builds on This Model
• Runs in two data-parallel 

phases (map, reduce): 
• Map phase repartitions and 

optionally combines source 
data. 

• Reduce phase analyzes each 
data partition. 

• A global merge of the results is 
not performed. 

• Classic example: word count 
• Source data items: lines of 

text 
• Mappers: emit {word, count} 

for all unique words. 
• Words are hashed to 

partitions. 
• Reducers sum counts and emit 

total counts for each word.

partitions
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Data-Parallel Execution Steps

• Eval phase: each server queries local 
objects and runs eval and merge 
methods: 

• Accessing local objects avoids data 
motion. 

• Completes with one result object per 
server.

• Merge phase: all servers perform 
binary, distributed merge to create 
final result: 

• Merge runs in parallel to minimize 
completion time. 

• Returns final result object to client.
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Ecommerce Code Sample(C#)

• Define shopping cart objects stored in the in-memory data grid (IMDG):

class ShoppingCartItem
{
    public string Name { get; set; }
    public decimal Price { get; set; }
    public int Quantity { get; set; }
}
 
class ShoppingCart
{
    public string CustomerId { get; set; }
    public IList<ShoppingCartItem> Items { get; } = new 
List<ShoppingCartItem>();
    public decimal TotalValue
    { get { return Items.Sum((item) => item.Quantity * item.Price); }}
    public decimal ItemCount
    { get { return Items.Sum((item) => item.Quantity); }}
}
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Loading the Shopping Carts into the Grid

• IMDG provides location-independent access using create/read/update/delete  
(“CRUD”) APIs. 

• IMDG transparently distributes and load-balances the shopping carts across a 
cluster of servers or cloud instances. 

• Allows an application to host much larger data sets than possible on a single 
server.

var carts = CacheFactory.GetCache("carts"); // Gets reference to a 
namespace
foreach (var cart in collection)
    carts.Add(cart.CustomerId, cart);       // CustomerId serves as key

In-Memory Computing Summit Silicon Valley 2017 20



Posting a Click Event to the IMDG with ReactiveX

private static void PostCartItem()
{
    var nc = CacheFactory.GetCache("carts"); 

    var item = new ShoppingCartItem
    {
        Name = “Acme Snow Globe",
        Price = 7.50m,
        Quantity = 3
    };
    
    var key = nc.CreateKey("Jane Doe");

    nc.PostEvent(id: key,
                 eventInfo: "Add cart item",
                 payload: item.ToBytes());
}
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Running a Streaming Method on a Single Object

    // Initialization method is run when the invocation grid is first loaded:
    public void Init_pipeline()
    {
        // Set up a ReactiveX pipeline to handle adding shopping cart items:
        carts.GetEventSource()
            .Where(ev => ev.EventInfo == "Add cart item")
            .Select(ev => Tuple.Create(ShoppingCartItem.FromBytes(ev.Payload),
                    ev.ObjectId.GetStringKey()))
            .Subscribe(HandleCartAddEvent);
    }
 
    public void HandleCartAddEvent(Tuple<ShoppingCartItem, string> addCartItemTuple)
    {
        var custId = addCartItemTuple.Item2;
        var mycart = carts.Retrieve(custId, acquireLock: true) as ShoppingCart;
        mycart.Items.Add(addCartItemTuple.Item1);
        carts.Update(custId, mycart, unlockAfterUpdate: true);
    }

In-Memory Computing Summit Silicon Valley 
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Running a Batch Data-Parallel Method
 finalResult = carts.QueryObjects<ShoppingCart>()
                .Where(cart => cart.TotalValue >= 20.00m)   // filter carts 
                .Invoke(
                    timeout: TimeSpan.FromMinutes(1), param: productName,
                    evalMethod: (cart, pName) =>
                    {
                        var result = new Result();
                        result.numCarts = 1;
                        // see if the selected product is in the cart:
                        if (cart.Items.Any(item => item.Name.Equals(pName)))
                            result.numMatches++;
                        return result;
                    })
                .Merge(
                    (result1, result2) =>
                    {
                        result1.numMatches += result2.numMatches;
                        result1.numCarts += result2.numCarts;
                        return result1; });

Filter objects

Invoke method

Merge results
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What Is a Digital Twin?

• Term coined by Dr. Michael Grieves (U. Michigan) in 2002 for use in product life 
cycle management 

• Popularized in Gartner’s “Top 10 Strategic Technology Trends for 2017: Digital 
Twins” for use with IoT 

• Definition: a digital representation of a physical entity; an encapsulated 
software object that comprises (per Gartner): 

• A model (e.g., composition, structure, metadata for an IoT sensor) 
• Data (e.g., sensor data, entity description) 
• Unique identity (e.g., sensor identifier) 
• Monitoring (e.g., alerts) 

• Significance: focuses on modeling data sources 
• A basis for correlating and analyzing streaming data 
• A context for deep introspection and interaction
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Examples of Digital Twins in IoT

25

Digital TwinsLive System – Physical Objects

(Autonomous
) Vehicles

Wind turbines 
and wind farms

Manufacturing 
floors and 
equipment
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Telemetry streams

Immediate feedback

Vehicle subsystems for safety monitoring & predictive 
maintenance 

Networks of machine 
tooling for real-time 
interactive view and 
predictive maintenance

Collections of wind 
turbine 
components for 
remote operations 
and predictive 
maintenance



Real-World Elevator

Actions
Open Door

Close Door

Ascend

Descend

Return to Lobby

Elevator Specs
Max People 10

Max Weight 1000 kg

Floors 8

Current Load
People Weight

4 people 320 kg

1

0

2

3

4

5

6

7

Tracking an Elevator: A Digital Twin Demonstration

26

Telemetry Streams

Real-Time 
Feedback
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Courtesy of: 

Digital twin of an elevator implemented by Crossvale, Inc.:
Digital Twin

Events

Operation Normal

Learning

Overweight

Descend Too-Fast

Ascend Too-Slow

Stuck Between Floors

Doors Stuck

Monitoring Stats

Elevator Position (cm) 720 cm

Floor position 3

Onboard Weight (kg) 320 kg

Power Consumption (kW) High

1

0

2

3

4

5

6

7

Alerts

Check Cable

Vibration Limit Exceeded

Maintenance Required



Some Applications for Digital Twins

A digital twin integrates incoming events with state information using domain-
specific algorithms to generate alerts:

27

Application State Information Events Logic Alerts
IoT devices Device status & 

history
Device telemetry Analyze to predict 

maintenance.
Maintenance 
requests

Medical  
monitoring

Patient history & 
medications

Heart-rate, blood-
pressure, etc.

Evaluate 
measurements over 
time windows with 
rules engine.

Alerts to patient 
& physician

Cable TV Viewer preferences & 
history, set-top box 
status

Channel change 
events, telemetry

Cleanse & map 
channel events for 
reco. engine; predict 
box failure.

Viewer recom-
mendations, 
repair alerts

Ecommerce Shopper preferences 
& buying history

Clickstream 
events from web 
site

Use ML to make 
product 
recommendations.

Product list for 
web site

Fraud  
detection

Customer status & 
history

Transactions Analyze patterns to 
identify probable fraud.

Alerts to 
customer & bank
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Why Use an IMDG to Host Digital Twins?

• Object-oriented data storage: 
• Offers a natural model for hosting digital 

twins. 
• Cleanly separates domain logic from data-

parallel orchestration. 
• Provides rich context for processing 

streaming data. 
• Integrates streaming and batch processing. 

• High performance: 
• Avoids data motion and associated network 

bottlenecks. 
• Fast and scales to handle large workloads. 

• Integrated high availability: 
• Uses data replication designed for live 

systems. 
• Can ensure that computation is high av.
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Modeling the Digital Twin with OOP

• Digital twin typically comprises: 
• An event collection 
• State information about the data 

source 
• Logic for managing events, 

updating and analyzing state, 
generating alerts 

• Object oriented model: 
• Integrates event collection with 

state information. 
• Encapsulates domain-specific logic 

(e.g., ML, rules engine, etc.). 
• Runs code where the data lives 

(avoids data motion). 
• Delivers fast response times.
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Comparison to Stream-Oriented Platforms

Stream-oriented platforms typically 
focus on analyzing the event stream: 
• Lack specific support for building 

digital twins and managing their state 
& semantics: 

• Adds complexity in implementing digital  
twin models. 

• Can lack a clean separation between 
event orchestration and domain-specific 
code. 

• Do not specifically integrate state 
management with stream processing: 

• Usually require state data to be accessed 
or updated using a separate storage tier. 

• Incur network delays which can lead to 
bottlenecks.
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The Effect of Data Motion on Scaling

• Data motion creates a 
bottleneck that limits 
throughput. 

• Avoiding data motion 
enables linear 
scalability for growing 
workloads => 
predictable, low 
latency. 

• Example: back-testing 
stock histories in 
parallel 
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Comparison to Stream-Oriented Platforms

Some advantages of the digital 
twin model: 
• Auto-correlates events from each 

data source: 
• Avoids the need to do this in the  

stream processing pipeline. 
• Refactors processing steps to 

perform them in one location: 
• Avoids possible data motion  

between steps. 
• Provides a basis for transparent 

scaling: 
• Leverages the grid’s load-balancing 

of digital twin objects across the 
IMDG.
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Stream-Oriented 
Model:

Digital Twin 
Model:



Ingesting Stream Data into an IMDG from Kafka
IMDG can transparently scale event 
reception from Kafka:
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IMDG uses key to direct events to grid 
host for associated digital twin 
object. 

Scale

• IMDG can spawn 
multiple Kafka 
connectors in a 
“Connector Grid”  
to handle events  
in parallel. 

• IMDG can spawn a 
“Worker Grid” to 
receive events and 
implement digital 
twin semantics.  

• IMDG transparently 
scales as the 
workload grows.



Code Sample (Java): Connecting an IMDG to Kafka

// Create a grid startup action to start Kafka connectors:
GridAction connectAction = new ConnectorGridBuilder("hr_cache")
    .addKafkaServerPropertiesPath(new File("server.properties"))
    .addConnectorProperties(new File[] {new File("sink.properties")})
    .build();

// Start the invocation grid and register the startup action:
InvocationGrid grid = new InvocationGridBuilder(“conn_grid")
    .setLibraryPath("Kafka").addJar("applicationClasses.jar")
    .addStartupAction(connectAction).load();

# Example of connect-grid-sink.properties: 
name=grid-sink
connector.class=GridSinkConnector
key.converter=PassThroughConverter
value.converter=PassThroughConverter
topics=my_kafka_topic
grid.namedcache.name=mycache 
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Load inv. grid

Kafka connect 
code

Define properties



Using Kafka Partitions to Scale Event Handling

35

• Kafka offers partitions to scale out 
handling of event messages. 

• Partitions are distributed across brokers. 
• Brokers process messages in parallel. 

• IMDG can map Kafka partitions to grid 
partitions. 

• This minimizes event handling latency. 
• Avoids store-and-forward within IMDG. 

• How? 
• IMDG specifies key mapping algorithm. 
• Application specifies # Kafka partitions. 
• IMDG listens to appropriate Kafka partitions 

(and handles membership changes). 
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Digital Twin Manages Time Windows of Events

• Each digital twin object can host a time-
ordered & windowed collection of events. 

• Can be implemented as a transform on the 
collection similar to streaming APIs (e.g. 
Beam) 

• Event posting triggers eviction based on 
windowing policy. 

• Time window manager implements 
multiple windowing policies, e.g.: 

• Sliding 
• Tumbling 
• Session 

• Time window manager implements queries 
that supply windowed events for analysis.
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Example: A Heart-Rate Monitoring Application

A simple medical application that monitors 
heart rate telemetry from a mobile device: 
• Receives heart-rate telemetry events from 

patient’s mobile device. 
• Digital twin holds telemetry and patient’s 

history/status. 
• Event posting logic tracks these events 

within a collection in the digital twin. 
• Analysis logic evaluates the events using 

time windows on the collection and with 
regard to the patient’s history and status. 

• In this example, it alerts a doctor when 
heart-rate exceeds age-specific threshold. 

• Updates the patient’s status.

Patient Digital 
Twin
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Medical Monitoring & Alerting Architecture

• Heart-rate events flow to their respective digital twin objects for processing. 
• The IMDG transparently scales to handle large numbers of patients.
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Code Sample (C#): Heart-Rate Monitor

// Heart-rate event:
public class HeartRate
{
    public string PatientID { get; set; }
    public DateTime Timestamp { get; set; }
    public short BeatsPerMin { get; set; }
}

// Patient (the digital twin):
public class Patient
{
    public string Id { get; set; }
    public IList<HeartRate> HeartRates { get; set; }
    public DateTime Birthdate { get; set; }
    public int Age => (int)Math.Floor((DateTime.Now - Birthdate).TotalDays / 
365);
    public bool HeartIssueDetected { get; set; }
}
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Class for HR 
event

Class for patient

List of HR events



Code Sample (C#): Heart-Rate Monitor

// Set up a ReactiveX pipeline in the IMDG to handle incoming heart-rate 
events:
heartMonGrid.GetEventSource()
    .Where(ev => ev.EventInfo == "Heart Rate Event") // look for heart-rate 
events
    .Select(ev => HeartRate.FromBytes(ev.Payload))   // extract heart-rate 
data
    .Subscribe(HandleHeartRateEvent);          // update digital-twin
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Code Sample (C#): Heart-Rate Monitor
// Process an incoming heart rate event in the digital twin:
static void HandleHeartRateEvent(HeartRate heartRateEvent)
{
    var patient = heartMonGrid.Retrieve(heartRateEvent.PatientID, 
acquireLock: true)
                      as Patient;

    // Obtain an enumerable windowing transformation of the event collection:
    var slidingHeartRates = new SlidingWindowTransform<HeartRate>(
                                    source: patient.HeartRates,
                                    timestampSelector: hr => hr.Timestamp,
                                    windowDuration: TimeSpan.FromMinutes(5),
                                    every: TimeSpan.FromMinutes(1),
                                    startTime: DateTime.Now -
TimeSpan.FromDays(1));

    slidingHeartRates.Add(heartRateEvent);     // add event and evict as 
necessary
    AnalyzePatient(patient, slidingHeartRates); // analyze & update patient’s 
status

    heartMonGrid.Update(patient.Id, patient, unlockAfterUpdate: true);
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collection

Add event, analyze



Code Sample (C#): Heart-Rate Monitor
// Analyze patient’s state and send an alert if necessary:
static void AnalyzePatient(Patient patient, 
                           SlidingWindowTransform<HeartRate> slidingHeartRates)
{
    // See if there are any 5-minute periods in the past day when the average 
    // heart rate is too high. We use the sliding windows to calculate a
    // moving average and vary the alert threshold depending on patient’s age:

    foreach (var window in slidingHeartRates)
    {
        if (window.Count == 0) continue; // can't average zero elements

        var avg = window.Average(hr => hr.BeatsPerMin);
        if ((patient.Age > 50 && avg > 130) || avg > 160) {
            SendAlert($"{patient.Id} registers high heart rate at 
{window.StartTime}!");
            patient.HeartIssueDetected = true; 
        }
    }
}In-Memory Computing Summit Silicon Valley 
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© ScaleOut Software, Inc. 
Company Confidential

A More Sophisticated Digital Twin Model

Example Model of Heart-Rate Monitoring for High Intensity Exercise 
Program 
• Example of data to be tracked: 

• Event collection: time-stamped heart rate telemetry, type of exercise, exercise-
specific parameters (distance, strides, altitude change, etc.) 

• Participant background/history: age, height, weight history, heart-related 
 medical conditions and medications, injuries, previous medical events 

• Exercise tracking: session history, average # sessions per week, average and  
peak heart rates, frequency of exercise types 

• Aggregate statistics: average/max/min exercise tracking statistics for all participants 
• Example of logic to be performed: 

• Notify participant if session history across time windows indicates need to change mix. 
• Notify participant if heart rate trends deviate significantly from aggregate statistics. 
• Alert participant/medical personnel if heart rate analysis across time windows 

indicates an imminent threat to health. 
• Report aggregate statistics.
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Challenge: Edge vs. Grid Service
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How partition the digital twin model’s data and 
logic between edge devices and the grid service: 
• Edge device: 

• Has limited storage and computing power, but… 
• Offers lowest latency to process events. 

• Grid service: 
• Can run sophisticated algorithms. 
• Can store long event history. 
• Can track detailed state of the physical twin. 

• Approach (akin to nervous system): 
• Perform tactical processing at edge for fast 

responsiveness. 
• Perform strategic processing in grid service. 

• Software tools are needed for transparent 
migration. 



Real-World Example: Tracking Cable Viewers

• Cable Company’s Goals: 
• Make real-time, personalized upsell offers. 
• Immediately respond to service issues & hotspots. 
• Track aggregate behavior to identify patterns, 

e.g.: 
• Total instantaneous incoming event rate 
• Most popular programs and # viewers by zip code 

• Requirements: 
• Track events from 10M set-top boxes with 25K 

events/sec (2.2B/day). 
• Correlate, cleanse, and enrich events per rules 

(e.g. ignore fast channel switches, match 
channels to programs) within 5 seconds. 

• Refresh aggregate statistics every 10 seconds.

©2011 Tammy Bruce presents LiveWire
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Solution: 
• Each set-top box is represented as a digital twin object in the IMDG. 

• Holds raw & enriched event streams, viewer parameters, and box statistics. 
• Use stream processing on box events to generate alerts for recommendation 

engine. 
• Use periodic data-parallel operations on objects to generate aggregate 

statistics.

Example: Tracking Cable Viewers

46

Real-Time Dashboard

Aggregate
Statistics

AWS Simulation: 
• 25 servers 
• 30K events/

sec 
• <1 sec. 

latency for 
alerts 

• 10s per batch 
update
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Example: Ecommerce Recommendations

47

• Goals: 
• Make real-time, personalized 

recommendations for an ecommerce web site: 
• Combine clickstream, shopper demographics, static 

recommendations 
• Track aggregate site performance, e.g.: 

• Shopper behavior (clicks-to-cart, basket size, …) 
• Merchandizing effectiveness (best selling products) 

• Requirements: 
• Handle 500K+ simultaneous shoppers. 
• Return recommendations within 200 msec. 
• Refresh aggregate statistics every minute.

In-Memory Computing Summit Silicon Valley 
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Recommender 
System



Solution: 
• Each shopper is represented as a 

digital twin object in the IMDG. 
• Holds clickstream events, shopper 

demographics, and ML parameters. 
• Note: digital twins can be used to  

represent people. 
• Use stream processing on clickstream 

events to generate 
recommendations. 

• Analysis logic runs an ML algorithm in 
real-time to generate recommendations. 

• Use periodic data-parallel operations 
on objects to generate aggregate 
statistics.

Example: Ecommerce Recommendations

48In-Memory Computing Summit Silicon Valley 
2017



Recap of the Journey

Quick Review of 
Stream Processing How In-Memory 

Data Grids Differ
What is a Digital 

Twin?

Implementing a 
Digital Twin with an 

IMDGData Ingestion and 
Time Windows

Examples of 
Implementing & 

Using Digital Twins

Traditional 
streaming focuses 
on stream data vs. 

data sources.

IMDGs use o-o 
state to integrate 

streaming & 
batch.

Digital twins 
enable deep 

introspection on 
stream data.

OOP on an IMDG 
provides support 
for digital twin 

model.
IMDG scales 

performance for 
digital twins.

Digital twins provide 
a powerful model 

for stream 
processing. Thank 

you!In-Memory Computing Summit Silicon Valley 
2017 49
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