
Using In-Memory
Computing to Create

the Digital Twin:  
A New Model for

Stream Processing
DR. WILLIAM L. BAIN  

SCALEOUT SOFTWARE

A Brief Journey Towards the Digital Twin

Quick Review of
Stream Processing How In-Memory

Data Grids Differ
What is a Digital

Twin?

Implementing a
Digital Twin with an

IMDGData Ingestion and
Time Windows

Examples of
Implementing &

Using Digital Twins

In-Memory Computing Summit Silicon Valley 2017 2

• Dr. William Bain, Founder & CEO of ScaleOut Software:
• Email: wbain@scaleoutsoftware.com
• Ph.D. in Electrical Engineering (Rice University, 1978)
• Career focused on parallel computing – Bell Labs, Intel, Microsoft
• 3 prior start-ups, last acquired by Microsoft and product now ships as

Network Load Balancing in Windows Server 

• ScaleOut Software develops and markets In-Memory Data
Grids, software for:

• Scaling application performance with  
in-memory data storage

• Analyzing live data in real time with  
in-memory computing

• Twelve years in the market; 440+ customers, 11,000+ servers

About the Speaker

3In-Memory Computing Summit Silicon Valley 2017

Basic Stream-Oriented Architecture
Stream-oriented platforms typically create a computing pipeline from data
sources to sinks:
• Pipeline stages perform transformations often described by programming models as a sequence

of extension methods.
• Usually access state data (in-memory and/or persistent) using an optional, separate storage tier.

• Examples: Apama (CEP), Apache Storm, Spark Streaming, Beam, and Flink

4

Pipeline model

Optional state

In-Memory Computing Summit Silicon Valley 2017

Complex Event Processing Architecture

• Example: Apama from Software AG
• Architecture (the Apama “Correlator”):

• HyperTree: matches and filters incoming  
events

• Temporal Sequencer: finds real-time  
correlations between events

• Stream Processor: executes analytics on  
windows of events

• Programs can be written in EPL or Java; simple example of stock tracking in
EPL:

monitor PriceRise{
 StockTick firstTick, finalTick;
 action onload() {
 on StockTick (symbol=“IBM”, price>210.5):firstTick {furtherRise();}
 action furtherRise() on StockTick (symbol=“IBM”,
price>firstTick.price*1.05):finalTick
 {send PlaceSellOrder(“IBM”, 100.0 to “Market”);}Illustration and code sample from “The Apama Platform,”

Software AG

5In-Memory Computing Summit Silicon Valley 2017

Two Apache Platforms for Stream Processing

Task-parallel: Data-parallel (micro-
batched):

6In-Memory Computing Summit Silicon Valley 2017

Stream Processing Model from Apache Beam

• Originally developed by Google.
• Provides unified, portable APIs for batch and stream processing.
• Relies on external execution platforms called “runners”  

(e.g., Apache Flink, Spark, Google Cloud Dataflow).
• Key elements:

• Pipeline: data processing job as a directed set of steps
• PCollection: the data inside a pipeline
• Ptransform: an execution step in the pipeline (e.g., ParDo) or an IO step

Illustration from “Introduction to Apache Beam” by JB
Onofre’

7In-Memory Computing Summit Silicon Valley 2017

Apache Beam Code Examples (Java)

• Basic Dataflow model:

Pipeline p = Pipeline.create(); // create a pipeline
p.apply(TextIO.Read.from(“/path/to/…”) // read input
 .apply(new CountWords()) // do some processing
 .apply(TextIO.Write.to(“/path/to/…”); // write output
p.run(); // run the pipeline

• Example of advanced features (session windows):

Pcollection<KV<String, Integer>> scores = input
 .apply(Window.into(SessionWindows.of(Duration.standardMinutes(2))
 .triggering(AtWatermark()
 .withEarlyFirings(
 AtPeriod(Duration.standardMinutes(1)))
 .withLateFirings(AtCount(1)))
 .accumulatingFiredPanes())
 .apply(Sum.IntegersPerKey());

Code samples from “Introduction to Apache Beam” by JB
Onofre’

8

Apply transform

Analyze

Simple example

In-Memory Computing Summit Silicon Valley 2017

Stream Processing with Apache Flink

• Flink data flow:

• Flink architecture:

Data
Stream Operation Data

StreamSource Sink

Illustrations from “Apache Flink: What, How, Why, Who, Where?” by Slim
Baltagi

9In-Memory Computing Summit Silicon Valley 2017

How In-Memory Data Grids Differ

IMDGs focus on integrating computing with state (vs. processing data streams
with optional external state):
• IMDG provides scalable, hi-av storage for live data:

• Stores and manages live state with object-oriented model:
• Sequentially consistent data shared by multiple clients
• Object-oriented collections by type
• CRUD APIs for data access as key/value pairs
• Distributed query by object properties

• Has fast (<1 msec.) data access and updates
• Designed for transparent scalability and high availability:

• Automatic elasticity and load-balancing
• Automatic data replication, failure detection, recovery

• IMDG integrates in-memory computing with  
data storage:

• Leverages the computing power of commodity servers.
• Computes where the data lives to avoid network bottlenecks.

Logical
view

Physical
view

10

Storage Model

In-Memory Computing Summit Silicon Valley 2017

Adding In-Memory Computing to an IMDG

• Each grid host runs a worker
process which executes
application-defined
methods.

• The set of worker processes is
called an invocation grid.

• IG usually runs language-
specific runtimes (JVM, .NET).

• IMDG can ship code to the IG
workers.

• Key advantages:
• Avoids network bottlenecks by

moving computing to the data.
• Leverages IMDG’s cores &

hosts.
• Isolates application code from

grid service.

Invocation Grid

11

In-Memory Data
Grid

In-Memory Computing Summit Silicon Valley 2017

IMDGs Perform Both Stream and Batch Processing

• IMDG leverages object-oriented storage model to execute methods on instances of
stored objects.

• IMDG naturally integrates both stream-based and batch execution models:
• Stream-based: execute method(s) on independent objects and sequentially on the same

object.
• Batch: execute a data-parallel method on a collection of objects.
• Result: an implementation of the HTAP architecture

Stream-based
execution

Batch (data-parallel)
execution

In-Memory Computing Summit Silicon Valley
2017 12

Example of Combining Streaming and Batch

An Ecommerce site  
tracking web shoppers:
• IMDG manages clickstreams

from shoppers by calling
methods on individual
objects to process click
events.

• Can immediately track
shopper’s actions.

• IMDG performs data-
parallel, batch analytics on
grid data to track
aggregate trends.

• Can determine best selling
products, average basket
size, etc.

13In-Memory Computing Summit Silicon Valley 2017

Executing Multiple, Independent Requests

Method execution runs
independently for multiple objects:
• IMDG handles streaming requests  

from a single client.
• Also handles multiple clients in

parallel.

In-Memory Computing Summit Silicon Valley 2017 14

Object

Executing a Data-Parallel Method

Method execution implements a
batch job on an object
collection:
• Client runs a single method on

multiple objects distributed
across the grid.

• Results optionally are merged
and returned to the client.

In-Memory Computing Summit Silicon Valley
2017 15

Object

Basic Data-Parallel Execution Model

A fundamental model
from parallel
supercomputing:
• Run one method

(“eval”) in parallel
across many data items.

• Optionally merge the
results.

• Binary combining is a
special case, but…

• It runs in logN time to
enable scalable speedup.

In-Memory Computing Summit Silicon Valley 2017 16

MapReduce Builds on This Model
• Runs in two data-parallel

phases (map, reduce):
• Map phase repartitions and

optionally combines source
data.

• Reduce phase analyzes each
data partition.

• A global merge of the results is
not performed.

• Classic example: word count
• Source data items: lines of

text
• Mappers: emit {word, count}

for all unique words.
• Words are hashed to

partitions.
• Reducers sum counts and emit

total counts for each word.

partitions

In-Memory Computing Summit Silicon Valley 2017 17

Data-Parallel Execution Steps

• Eval phase: each server queries local
objects and runs eval and merge
methods:

• Accessing local objects avoids data
motion.

• Completes with one result object per
server.

• Merge phase: all servers perform
binary, distributed merge to create
final result:

• Merge runs in parallel to minimize
completion time.

• Returns final result object to client.

In-Memory Computing Summit Silicon Valley 2017 18

Ecommerce Code Sample(C#)

• Define shopping cart objects stored in the in-memory data grid (IMDG):

class ShoppingCartItem
{
 public string Name { get; set; }
 public decimal Price { get; set; }
 public int Quantity { get; set; }
}

class ShoppingCart
{
 public string CustomerId { get; set; }
 public IList<ShoppingCartItem> Items { get; } = new
List<ShoppingCartItem>();
 public decimal TotalValue
 { get { return Items.Sum((item) => item.Quantity * item.Price); }}
 public decimal ItemCount
 { get { return Items.Sum((item) => item.Quantity); }}
}

In-Memory Computing Summit Silicon Valley
2017 19

Class for cart
item

List of cart items

Loading the Shopping Carts into the Grid

• IMDG provides location-independent access using create/read/update/delete  
(“CRUD”) APIs.

• IMDG transparently distributes and load-balances the shopping carts across a
cluster of servers or cloud instances.

• Allows an application to host much larger data sets than possible on a single
server.

var carts = CacheFactory.GetCache("carts"); // Gets reference to a
namespace
foreach (var cart in collection)
 carts.Add(cart.CustomerId, cart); // CustomerId serves as key

In-Memory Computing Summit Silicon Valley 2017 20

Posting a Click Event to the IMDG with ReactiveX

private static void PostCartItem()
{
 var nc = CacheFactory.GetCache("carts");

 var item = new ShoppingCartItem
 {
 Name = “Acme Snow Globe",
 Price = 7.50m,
 Quantity = 3
 };

 var key = nc.CreateKey("Jane Doe");

 nc.PostEvent(id: key,
 eventInfo: "Add cart item",
 payload: item.ToBytes());
}

In-Memory Computing Summit Silicon Valley 2017 21

Select namespace

Post event

Create item

Create key

Running a Streaming Method on a Single Object

 // Initialization method is run when the invocation grid is first loaded:
 public void Init_pipeline()
 {
 // Set up a ReactiveX pipeline to handle adding shopping cart items:
 carts.GetEventSource()
 .Where(ev => ev.EventInfo == "Add cart item")
 .Select(ev => Tuple.Create(ShoppingCartItem.FromBytes(ev.Payload),
 ev.ObjectId.GetStringKey()))
 .Subscribe(HandleCartAddEvent);
 }

 public void HandleCartAddEvent(Tuple<ShoppingCartItem, string> addCartItemTuple)
 {
 var custId = addCartItemTuple.Item2;
 var mycart = carts.Retrieve(custId, acquireLock: true) as ShoppingCart;
 mycart.Items.Add(addCartItemTuple.Item1);
 carts.Update(custId, mycart, unlockAfterUpdate: true);
 }

In-Memory Computing Summit Silicon Valley
2017 22

Subscribe to stream

Add item to cart obj.

Running a Batch Data-Parallel Method
 finalResult = carts.QueryObjects<ShoppingCart>()
 .Where(cart => cart.TotalValue >= 20.00m) // filter carts
 .Invoke(
 timeout: TimeSpan.FromMinutes(1), param: productName,
 evalMethod: (cart, pName) =>
 {
 var result = new Result();
 result.numCarts = 1;
 // see if the selected product is in the cart:
 if (cart.Items.Any(item => item.Name.Equals(pName)))
 result.numMatches++;
 return result;
 })
 .Merge(
 (result1, result2) =>
 {
 result1.numMatches += result2.numMatches;
 result1.numCarts += result2.numCarts;
 return result1; });

Filter objects

Invoke method

Merge results

In-Memory Computing Summit Silicon Valley
2017 23

What Is a Digital Twin?

• Term coined by Dr. Michael Grieves (U. Michigan) in 2002 for use in product life
cycle management

• Popularized in Gartner’s “Top 10 Strategic Technology Trends for 2017: Digital
Twins” for use with IoT

• Definition: a digital representation of a physical entity; an encapsulated
software object that comprises (per Gartner):

• A model (e.g., composition, structure, metadata for an IoT sensor)
• Data (e.g., sensor data, entity description)
• Unique identity (e.g., sensor identifier)
• Monitoring (e.g., alerts)

• Significance: focuses on modeling data sources
• A basis for correlating and analyzing streaming data
• A context for deep introspection and interaction

24In-Memory Computing Summit Silicon Valley 2017

Examples of Digital Twins in IoT

25

Digital TwinsLive System – Physical Objects

(Autonomous
) Vehicles

Wind turbines
and wind farms

Manufacturing
floors and
equipment

In-Memory Computing Summit Silicon Valley 2017

Telemetry streams

Immediate feedback

Vehicle subsystems for safety monitoring & predictive
maintenance

Networks of machine
tooling for real-time
interactive view and
predictive maintenance

Collections of wind
turbine
components for
remote operations
and predictive
maintenance

Real-World Elevator

Actions
Open Door

Close Door

Ascend

Descend

Return to Lobby

Elevator Specs
Max People 10

Max Weight 1000 kg

Floors 8

Current Load
People Weight

4 people 320 kg

1

0

2

3

4

5

6

7

Tracking an Elevator: A Digital Twin Demonstration

26

Telemetry Streams

Real-Time
Feedback

In-Memory Computing Summit Silicon Valley 2017

Courtesy of:

Digital twin of an elevator implemented by Crossvale, Inc.:
Digital Twin

Events

Operation Normal

Learning

Overweight

Descend Too-Fast

Ascend Too-Slow

Stuck Between Floors

Doors Stuck

Monitoring Stats

Elevator Position (cm) 720 cm

Floor position 3

Onboard Weight (kg) 320 kg

Power Consumption (kW) High

1

0

2

3

4

5

6

7

Alerts

Check Cable

Vibration Limit Exceeded

Maintenance Required

Some Applications for Digital Twins

A digital twin integrates incoming events with state information using domain-
specific algorithms to generate alerts:

27

Application State Information Events Logic Alerts
IoT devices Device status &

history
Device telemetry Analyze to predict

maintenance.
Maintenance
requests

Medical  
monitoring

Patient history &
medications

Heart-rate, blood-
pressure, etc.

Evaluate
measurements over
time windows with
rules engine.

Alerts to patient
& physician

Cable TV Viewer preferences &
history, set-top box
status

Channel change
events, telemetry

Cleanse & map
channel events for
reco. engine; predict
box failure.

Viewer recom-
mendations,
repair alerts

Ecommerce Shopper preferences
& buying history

Clickstream
events from web
site

Use ML to make
product
recommendations.

Product list for
web site

Fraud  
detection

Customer status &
history

Transactions Analyze patterns to
identify probable fraud.

Alerts to
customer & bank

In-Memory Computing Summit Silicon Valley
2017

Why Use an IMDG to Host Digital Twins?

• Object-oriented data storage:
• Offers a natural model for hosting digital

twins.
• Cleanly separates domain logic from data-

parallel orchestration.
• Provides rich context for processing

streaming data.
• Integrates streaming and batch processing.

• High performance:
• Avoids data motion and associated network

bottlenecks.
• Fast and scales to handle large workloads.

• Integrated high availability:
• Uses data replication designed for live

systems.
• Can ensure that computation is high av.

28In-Memory Computing Summit Silicon Valley 2017

Modeling the Digital Twin with OOP

• Digital twin typically comprises:
• An event collection
• State information about the data

source
• Logic for managing events,

updating and analyzing state,
generating alerts

• Object oriented model:
• Integrates event collection with

state information.
• Encapsulates domain-specific logic

(e.g., ML, rules engine, etc.).
• Runs code where the data lives

(avoids data motion).
• Delivers fast response times.

29In-Memory Computing Summit Silicon Valley
2017

Comparison to Stream-Oriented Platforms

Stream-oriented platforms typically
focus on analyzing the event stream:
• Lack specific support for building

digital twins and managing their state
& semantics:

• Adds complexity in implementing digital  
twin models.

• Can lack a clean separation between
event orchestration and domain-specific
code.

• Do not specifically integrate state
management with stream processing:

• Usually require state data to be accessed
or updated using a separate storage tier.

• Incur network delays which can lead to
bottlenecks.

30In-Memory Computing Summit Silicon Valley
2017

The Effect of Data Motion on Scaling

• Data motion creates a
bottleneck that limits
throughput.

• Avoiding data motion
enables linear
scalability for growing
workloads =>
predictable, low
latency.

• Example: back-testing
stock histories in
parallel

In-Memory Computing Summit Silicon Valley
2017 31

Comparison to Stream-Oriented Platforms

Some advantages of the digital
twin model:
• Auto-correlates events from each

data source:
• Avoids the need to do this in the  

stream processing pipeline.
• Refactors processing steps to

perform them in one location:
• Avoids possible data motion  

between steps.
• Provides a basis for transparent

scaling:
• Leverages the grid’s load-balancing

of digital twin objects across the
IMDG.

32In-Memory Computing Summit Silicon Valley
2017

Stream-Oriented
Model:

Digital Twin
Model:

Ingesting Stream Data into an IMDG from Kafka
IMDG can transparently scale event
reception from Kafka:

33In-Memory Computing Summit Silicon Valley
2017

IMDG uses key to direct events to grid
host for associated digital twin
object.

Scale

• IMDG can spawn
multiple Kafka
connectors in a
“Connector Grid”  
to handle events  
in parallel.

• IMDG can spawn a
“Worker Grid” to
receive events and
implement digital
twin semantics.

• IMDG transparently
scales as the
workload grows.

Code Sample (Java): Connecting an IMDG to Kafka

// Create a grid startup action to start Kafka connectors:
GridAction connectAction = new ConnectorGridBuilder("hr_cache")
 .addKafkaServerPropertiesPath(new File("server.properties"))
 .addConnectorProperties(new File[] {new File("sink.properties")})
 .build();

// Start the invocation grid and register the startup action:
InvocationGrid grid = new InvocationGridBuilder(“conn_grid")
 .setLibraryPath("Kafka").addJar("applicationClasses.jar")
 .addStartupAction(connectAction).load();

Example of connect-grid-sink.properties:
name=grid-sink
connector.class=GridSinkConnector
key.converter=PassThroughConverter
value.converter=PassThroughConverter
topics=my_kafka_topic
grid.namedcache.name=mycache

In-Memory Computing Summit Silicon Valley
2017 34

Load inv. grid

Kafka connect
code

Define properties

Using Kafka Partitions to Scale Event Handling

35

• Kafka offers partitions to scale out
handling of event messages.

• Partitions are distributed across brokers.
• Brokers process messages in parallel.

• IMDG can map Kafka partitions to grid
partitions.

• This minimizes event handling latency.
• Avoids store-and-forward within IMDG.

• How?
• IMDG specifies key mapping algorithm.
• Application specifies # Kafka partitions.
• IMDG listens to appropriate Kafka partitions

(and handles membership changes).

In-Memory Computing Summit Silicon Valley
2017

Digital Twin Manages Time Windows of Events

• Each digital twin object can host a time-
ordered & windowed collection of events.

• Can be implemented as a transform on the
collection similar to streaming APIs (e.g.
Beam)

• Event posting triggers eviction based on
windowing policy.

• Time window manager implements
multiple windowing policies, e.g.:

• Sliding
• Tumbling
• Session

• Time window manager implements queries
that supply windowed events for analysis.

36In-Memory Computing Summit Silicon Valley
2017

Example: A Heart-Rate Monitoring Application

A simple medical application that monitors
heart rate telemetry from a mobile device:
• Receives heart-rate telemetry events from

patient’s mobile device.
• Digital twin holds telemetry and patient’s

history/status.
• Event posting logic tracks these events

within a collection in the digital twin.
• Analysis logic evaluates the events using

time windows on the collection and with
regard to the patient’s history and status.

• In this example, it alerts a doctor when
heart-rate exceeds age-specific threshold.

• Updates the patient’s status.

Patient Digital
Twin

In-Memory Computing Summit Silicon Valley
2017 37

Medical Monitoring & Alerting Architecture

• Heart-rate events flow to their respective digital twin objects for processing.
• The IMDG transparently scales to handle large numbers of patients.

38In-Memory Computing Summit Silicon Valley
2017

Code Sample (C#): Heart-Rate Monitor

// Heart-rate event:
public class HeartRate
{
 public string PatientID { get; set; }
 public DateTime Timestamp { get; set; }
 public short BeatsPerMin { get; set; }
}

// Patient (the digital twin):
public class Patient
{
 public string Id { get; set; }
 public IList<HeartRate> HeartRates { get; set; }
 public DateTime Birthdate { get; set; }
 public int Age => (int)Math.Floor((DateTime.Now - Birthdate).TotalDays /
365);
 public bool HeartIssueDetected { get; set; }
}

In-Memory Computing Summit Silicon Valley
2017 39

Class for HR
event

Class for patient

List of HR events

Code Sample (C#): Heart-Rate Monitor

// Set up a ReactiveX pipeline in the IMDG to handle incoming heart-rate
events:
heartMonGrid.GetEventSource()
 .Where(ev => ev.EventInfo == "Heart Rate Event") // look for heart-rate
events
 .Select(ev => HeartRate.FromBytes(ev.Payload)) // extract heart-rate
data
 .Subscribe(HandleHeartRateEvent); // update digital-twin

In-Memory Computing Summit Silicon Valley
2017 40

Code Sample (C#): Heart-Rate Monitor
// Process an incoming heart rate event in the digital twin:
static void HandleHeartRateEvent(HeartRate heartRateEvent)
{
 var patient = heartMonGrid.Retrieve(heartRateEvent.PatientID,
acquireLock: true)
 as Patient;

 // Obtain an enumerable windowing transformation of the event collection:
 var slidingHeartRates = new SlidingWindowTransform<HeartRate>(
 source: patient.HeartRates,
 timestampSelector: hr => hr.Timestamp,
 windowDuration: TimeSpan.FromMinutes(5),
 every: TimeSpan.FromMinutes(1),
 startTime: DateTime.Now -
TimeSpan.FromDays(1));

 slidingHeartRates.Add(heartRateEvent); // add event and evict as
necessary
 AnalyzePatient(patient, slidingHeartRates); // analyze & update patient’s
status

 heartMonGrid.Update(patient.Id, patient, unlockAfterUpdate: true);

In-Memory Computing Summit Silicon Valley
2017 41

Transform the

collection

Add event, analyze

Code Sample (C#): Heart-Rate Monitor
// Analyze patient’s state and send an alert if necessary:
static void AnalyzePatient(Patient patient,
 SlidingWindowTransform<HeartRate> slidingHeartRates)
{
 // See if there are any 5-minute periods in the past day when the average
 // heart rate is too high. We use the sliding windows to calculate a
 // moving average and vary the alert threshold depending on patient’s age:

 foreach (var window in slidingHeartRates)
 {
 if (window.Count == 0) continue; // can't average zero elements

 var avg = window.Average(hr => hr.BeatsPerMin);
 if ((patient.Age > 50 && avg > 130) || avg > 160) {
 SendAlert($"{patient.Id} registers high heart rate at
{window.StartTime}!");
 patient.HeartIssueDetected = true;
 }
 }
}In-Memory Computing Summit Silicon Valley

2017 42

Analyze time windows

© ScaleOut Software, Inc.
Company Confidential

A More Sophisticated Digital Twin Model

Example Model of Heart-Rate Monitoring for High Intensity Exercise
Program
• Example of data to be tracked:

• Event collection: time-stamped heart rate telemetry, type of exercise, exercise-
specific parameters (distance, strides, altitude change, etc.)

• Participant background/history: age, height, weight history, heart-related 
 medical conditions and medications, injuries, previous medical events

• Exercise tracking: session history, average # sessions per week, average and  
peak heart rates, frequency of exercise types

• Aggregate statistics: average/max/min exercise tracking statistics for all participants
• Example of logic to be performed:

• Notify participant if session history across time windows indicates need to change mix.
• Notify participant if heart rate trends deviate significantly from aggregate statistics.
• Alert participant/medical personnel if heart rate analysis across time windows

indicates an imminent threat to health.
• Report aggregate statistics.

43In-Memory Computing Summit 2017

Challenge: Edge vs. Grid Service

44In-Memory Computing Summit Silicon Valley
2017

How partition the digital twin model’s data and
logic between edge devices and the grid service:
• Edge device:

• Has limited storage and computing power, but…
• Offers lowest latency to process events.

• Grid service:
• Can run sophisticated algorithms.
• Can store long event history.
• Can track detailed state of the physical twin.

• Approach (akin to nervous system):
• Perform tactical processing at edge for fast

responsiveness.
• Perform strategic processing in grid service.

• Software tools are needed for transparent
migration.

Real-World Example: Tracking Cable Viewers

• Cable Company’s Goals:
• Make real-time, personalized upsell offers.
• Immediately respond to service issues & hotspots.
• Track aggregate behavior to identify patterns,

e.g.:
• Total instantaneous incoming event rate
• Most popular programs and # viewers by zip code

• Requirements:
• Track events from 10M set-top boxes with 25K

events/sec (2.2B/day).
• Correlate, cleanse, and enrich events per rules

(e.g. ignore fast channel switches, match
channels to programs) within 5 seconds.

• Refresh aggregate statistics every 10 seconds.

©2011 Tammy Bruce presents LiveWire

In-Memory Computing Summit Silicon Valley
2017 45

Solution:
• Each set-top box is represented as a digital twin object in the IMDG.

• Holds raw & enriched event streams, viewer parameters, and box statistics.
• Use stream processing on box events to generate alerts for recommendation

engine.
• Use periodic data-parallel operations on objects to generate aggregate

statistics.

Example: Tracking Cable Viewers

46

Real-Time Dashboard

Aggregate
Statistics

AWS Simulation:
• 25 servers
• 30K events/

sec
• <1 sec.

latency for
alerts

• 10s per batch
update

In-Memory Computing Summit Silicon Valley
2017

Example: Ecommerce Recommendations

47

• Goals:
• Make real-time, personalized

recommendations for an ecommerce web site:
• Combine clickstream, shopper demographics, static

recommendations
• Track aggregate site performance, e.g.:

• Shopper behavior (clicks-to-cart, basket size, …)
• Merchandizing effectiveness (best selling products)

• Requirements:
• Handle 500K+ simultaneous shoppers.
• Return recommendations within 200 msec.
• Refresh aggregate statistics every minute.

In-Memory Computing Summit Silicon Valley
2017

Recommender
System

Solution:
• Each shopper is represented as a

digital twin object in the IMDG.
• Holds clickstream events, shopper

demographics, and ML parameters.
• Note: digital twins can be used to  

represent people.
• Use stream processing on clickstream

events to generate
recommendations.

• Analysis logic runs an ML algorithm in
real-time to generate recommendations.

• Use periodic data-parallel operations
on objects to generate aggregate
statistics.

Example: Ecommerce Recommendations

48In-Memory Computing Summit Silicon Valley
2017

Recap of the Journey

Quick Review of
Stream Processing How In-Memory

Data Grids Differ
What is a Digital

Twin?

Implementing a
Digital Twin with an

IMDGData Ingestion and
Time Windows

Examples of
Implementing &

Using Digital Twins

Traditional
streaming focuses
on stream data vs.

data sources.

IMDGs use o-o
state to integrate

streaming &
batch.

Digital twins
enable deep

introspection on
stream data.

OOP on an IMDG
provides support
for digital twin

model.
IMDG scales

performance for
digital twins.

Digital twins provide
a powerful model

for stream
processing. Thank

you!In-Memory Computing Summit Silicon Valley
2017 49

www.scaleoutsoftware.com

In-Memory Computing for Operational Intelligence

