Using In-Memory
Computing to Create
the Digital Twin:

A New Model for
Stream Processing

DR. WILLIAM L. BAIN
SCALEOUT SOFTWARE

A Brief Journey Towards the Digital Twin [in] Eomatng e

Quick Review of
Stream Processing >

3

How In-Memory ‘\
Data Grids Differ R

Time Windows

%

Data Ingestion and }‘/ IMDG

What is a Digital
Twin?

Implementing a
_Digital Twin with an

™

Examples of ‘
Implementing &

®

Using Digital Twins E_

In-Memory Computing Summit Silicon Valley 2017

About the Speaker [in] Eorraang iz

* Dr. William Bain, Founder & CEO of ScaleOut Software:

* Email: wbain@scaleoutsoftware.com
* Ph.D. in Electrical Engineering (Rice University, 1978)
» Career focused on parallel computing - Bell Labs, Intel, Microsoft

« 3 prior start-ups, last acquired by Microsoft and product now ships as
Network Load Balancing in Windows Server

 ScaleOut Software develops and markets In-Memory Data
Grids, software for:

» Scaling application performance with
in-memory data storage @ ScaleOut Software

+ Analyzing live data in real time with
IN-memory computing

* Twelve years in the market; 440+ customers, 11,000+ servers

In-Memory Computing Summit Silicon Valley 2017 3

UMNIT

Basic Stream-Oriented Architecture [in] igMemory .,

Stream-oriented platforms typically create a computing pipeline from data
sources to sinks:

* Pipeline stages perform transformations often described by programming models as a sequence
of extension methods.

« Usually access state data (in-memory and/or persistent) using an optional, separate storage tier.

« Examples: Apama (CEP), Apache Storm, Spark Streaming, Beam, and Flink
Stream Pipeline

Data - Data
Saurce —® | stream | — | Operatian | —® [o0 am ’ Sk Pipeline model

5 Y Poeine model
" Opiionatsiae

Storage

Dlstrlbuted
Cache

Database W,

Optional state

In-Memory Computing Summit Silicon Valley 2017

In-Memory

Complex Event Processing Architecture [in] Eomzeng s

« Example: Apama from Software AG

 Architecture (the Apama “Correlator”):

* HyperTree: matches and filters incoming
events

« Temporal Sequencer: finds real-time
correlations between events

« Stream Processor: executes analytics on
windows of events

* Programs can be written in EPL or Java; simple example of stock tracking in
EPL:

monitor PriceRise{
StockTick firstTick, finalTick;
action onload() {
on StockTick (symbol="“IBM”, price>210.5):firstTick {furtherRise();}
action furtherRise() on StockTick (symbol=“IBM”,
price>firstTick.price*1.05):finalTick
{send PlaceSellOrder(“IBM”, 100.0 to uMarké”Lgfsrtr)af;iTﬁand code sample from “The Apama Platform,”

0Ttware AG

In-Memory Computing Summit Silicon Valley 2017 5

Two Apache Platforms for Stream Processing

Task-parallel:

Storm

©o-0-0—-F—
(nput Stream \
Distributed Execution Engine

Output Stream

o-0-0-F~

Input Stream

D Computmg Erir

Data-parallel (micro-
batched):

-}RDD—bRDD—bRDD—}s S i

Input Data Strecm
Spark Execution Engine
. v
« RDD « RDD <« RDD +— Immutatls RSD |
Outpur Dara Straom Imenutable RZD
Memory
\ y

In-Memory Computing Summit Silicon Valley 2017

In-Memory

Stream Processing Model from Apache Beam] EaMesnon e

 Originally developed by Google.
* Provides unified, portable APIs for batch and stream processing. j

 Relies on external execution platforms called “runners”
(e.g., Apache Flink, Spark, Google Cloud Dataflow).

« Key elements:
 Pipeline: data processing job as a directed set of steps
* PCollection: the data inside a pipeline
* Ptransform: an execution step in the pipeline (e.g., ParDo) or an 10 step

Input —= PTransform/10 —— PTransform — PTransform —& Qutput

Illustration from “Introduction to Apache Beam” by JB

oo

In-Memory Computing Summit Silicon Valley 2017 7

In-Memory

Apache Beam Code Examples (Java) [in] i2:Memery. sy

» Basic Dataflow model:

Pipeline p = Pipeline.create(); // create a pipeline Simple example
p.apply(TextIO.Read.from(”/path/to/..”) // read input
.apply(new CountWords()) // do some processing
.apply(TextIO.Write.to(“/path/to/..”); // write output
p.run(); // run the pipeline

« Example of advanced features (session windows):

Pcollection<KV<String, Integer>> scores = input
.apply(Window.into(SessionWindows.of (Duration.standardMinutes (
.triggering(AtWatermark()
.withEarlyFirings(
AtPeriod(Duration.standardMinutes(1)))
.withLateFirings (AtCount(1l)))

.accumulatingFiredPanes())
-apply(Sum.IntegersPerKey()); Code samples from “Introdustion to Apache Beam” by JB

Onofre’

Apply transform

i1

In-Memory Computing Summit Silicon Valley 2017 8

In-Memory

Stream Processing with Apache Flink L] Eomzieng

* Flink data flow:

Data
Stream

Data
Stream

Operation

* Flink architecture: _
Client JobManager

Compilerir ————— P> Scheduling,
Optimizer Submil Job Aesource Mansgement
TaskManager . wmgelmm e TaskManager
Task Execution, Resulls Task Execution,
Dala Exchange (shuffle/broadcast) Dala Exchange

Illustrations from “Apache Flink: What, How, Why, Who, Where?” by Slim

RAaltagi
IJu\\.ugl

In-Memory Computing Summit Silicon Valley 2017 9

In-Memory

How In-Memory Data Grids Differ [in] ig:Mermery. sy

IMDGs focus on integrating computing with state (vs. processing data streams
with optional external state): Logical

* IMDG provides scalable, hi-av storage for live data: ——vieW————
« Stores and manages live state with object-oriented model: & 5o
» Sequentially consistent data shared by multiple clients -
» Object-oriented collections by type
» CRUD APIs for data access as key/value pairs

[, ‘
N_/ | wtv) 2

Ob Ject Collecdon

 Distributed query by object properties
* Has fast (<1 msec.) data access and updates
« Designed for transparent scalability and high availability:/,
* Automatic elasticity and load-balancing &
« Automatic data replication, failure detection, recovery & () & &)
* IMDG integrates in-memory computing with ==
data storage: < - <
* Leverages the computing power of commodity servers. Physical
- Computes where the data lives to avoid network bottlenecks. Storavg],gWModel

In-Memory Computing Summit Silicon Valley 2017 10

. o In-Memo
Adding In-Memory Computing to an IMDG 0] Comatiing
« Each grid host runs a worker
process which executes a Invocation Grid N\
application-defined) \ - . p X
methods. Lo L L
« The set of worker processes is e o e
called an invocation grid.
|G usually runs language-

<

& 7 . J/
specific runtimes (JVM, .NET).

Results Results
« IMDG can ship code to the IG “eq“em* * Req"em* +
workers. (\ y

S
« Key advantages: Grid Grid
« Avoids network bottlenecks by SSnice Seigica
moving computing to the data. i - y
* Leverages IMDG’s cores & Host 1 Host 2

hosts.

* |solates application code from

orid service In-Memory Data

Grid

In-Memory Computing Summit Silicon Valley 2017

11

SUMNIT

IMDGs Perform Both Stream and Batch Processing Il e

* IMDG leverages object-oriented storage model to execute methods on instances of
stored objects.

* IMDG naturally integrates both stream-based and batch execution models:

« Stream-based: execute method(s) on independent objects and sequentially on the same
object.

« Batch: execute a data-parallel method on a collection of objects.
« Result: an implementation of the HTAP architecture

y o 4 y oo 4
(=)

—_—

y - 4
-
ONo @06

Stream-based Batch (data-parallel)
execution execution

In-Memory Computing Summit Silicon Valley 12
2017

In-Memory

Example of Combining Streaming and Batch lin] Eamatng -

An Ecommerce site Shoppers
tracking web shoppers:

AN
° 1 |\
IMDG manages clickstreams ,.,/r' Clickstreams

(- ™)
In-Memory Data Grid

from shoppers by calling g TN orermemrgerenn. » ()
methods on individual

objects to process click "’}' A >
events. 7

« Can immediately track
shopper’s actions.

* IMDG performs data-
parallel, batch analytics on
grid data to track
aggregate trends.

« Can determine best selling
products, average basket Batch Analytics
size, etc.

In-Memory Computing Summit Silicon Valley 2017 13

Executing Multiple, Independent Requests

Method execution runs
independently for multiple objects:

* IMDG handles streaming requests
from a single client.

 Also handles multiple clients in
parallel.

Client

\—

Client

—

Client

———r

Invoke method

Return Results

lwvoke method

Return Results

—b.

lwvoke method

Return Results

£

IG
Worker

?

N

S <.

g
Grid
Service

Local
Memory

;

L
i
l

€ ~

3

IG
Worker

— Ay

I

- n
Grid
Service

fQ)d

Local

L Memory
U — Iy

In-Memory

[D Computmg |57

33

IG
Worker

*

\

— Ay

(
Grid
Service

Local
Memory

O@t

)

In-Memory Computing Summit Silicon Valley 2017

14

In-Memory
[ﬂ Computmgl s

Executing a Data-Parallel Method

Method execution implements a

batch job on an object o N N 3
collection: Lo e e
: : | | |

 Client runs a single method on Wo?ker Wo?ker Wo(r;ker

multiple objects distributed |

across the grid. L& L5
 Results optionally are merged m * m * m #

and returned to th~ ~linnt, 'a N o — 5

) Invoke parallel metr:: Grid Grid Grid
Client Service Service Service
Return merged results
" S

Local

Memory

=

\

s O

Local
Memory

oy,

L

In-Memory Computing Summit Silicon Valley
2017

Basic Data-Parallel Execution Model [in] Eomatng e

A fundamental model
from parallel

Source Collection

supercomputing: | | | | | | | i

* Run one method (e | [ow | [i — | [B =
(“eval’) in parallel } } } | { | | '
across many data items.

« Optionally merge the [\.,., /I [\,,., ’ [\ ’E I\ '/
results. : — . =

« Binary combining is a |
special case, but... _

* It runs in logN time to | mesae
enable scalable speedup.

In-Memory Computing Summit Silicon Valley 2017 16

* Runs in two data-parallel
phases (map, reduce):

* Map phase repartitions and
optionally combines source
data.

« Reduce phase analyzes each
data partition.

« A global merge of the results is
not performed.

» Classic example: word count

« Source data items: lines of
text

* Mappers: emit {word, count}
for all unique words.

« Words are hashed to
partitions.

* Reducers sum counts and emit
total counts for each word.

In-Memory

MapReduce Builds on This Model in] iaemen

source caaset

\J

'
e | e
\\\ U\

partitions
asee_| == =
' ! f
|. .. ’ I. - | |. .
]] []

result deeaset

| SUMNIT

w7z

In-Memory Computing Summit Silicon Valley 2017

17

In-Memory
D Computmgl oy

Data-Parallel Execution Steps

 Eval phase: each server queries local <+ Merge phase: all servers perform

objects and runs eval and merge binary, distributed merge to create
methods: final result:
» Accessing local objects avoids data * Merge runs in parallel to minimize
motion. completion time.
« Comnletes with one result object per Retums_ﬁnal result obiect tofrlmn’r .
| B . S E | |
=3 | omas|
2 -
X/ = : B | =
S| o 3 e . B o W
=] |5 T “El | —
Query ‘ | ? smu:Iom-n = £ ; N g
: “m;’;‘.&"” ® B:Tfn_&jt % l\Merge S o
R Grid Service 1 || erge
? \)t“g., H -
o2 T i:

In-Memory Computing Summit Silicon Valley 2017 18

In-Memory .,
[ﬂ Com putirr\vg |57

Ecommerce Code Sample(C#)

 Define shopping cart objects stored in the in-memory data grid (IMDG):

class ShoppingCartItem

{
public string Name { get; set; }
public decimal Price { get; set; }
public int Quantity { get; set; }
}

class ShoppingCart
{

public string CustomerId { get; set; }

public IList<ShoppingCartItem> Items { get; } = new
List<ShoppingCartItem>();

public decimal TotalValue

{ get { return Items.Sum((item) => item.Quantity * item.Price); }}

public decimal ItemCount
{ get { return Items.Sum((item) => item.Quantity); }}

In-MerTJ{ory Computing Summit Silicon Valley 19
2017

Loading the Shopping Carts into the Grid] e

* IMDG provides location-independent access using create/read/update/delete
(“CRUD”) APIs.

var carts = CacheFactory.GetCache("carts"); // Gets reference to a
namespace
foreach (var cart in collection)

- IMDG (3 TSparentty [dfstiButestantftoad-balandés M EHOpPing €attsacrdss a

cluster of servers or cloud instances.
 Allows an application to host much larger data sets than p0551ble on a single

server. /
" /)) '
Grid Grid
Single s -
Saiver Service Service
T | q = @ |
d can | S | |
I =
o Local |
Memory /
U v
Disiributed, In-Memory Data Gric

In-Memory Computing Summit Silicon Valley 2017 20

Posting a Click Event to the IMDG with ReactiveX — [nlemiigi-

private static void PostCartItem()

{
var nc = CacheFactory.GetCache("carts"); Select namespace
var item = new ShoppingCartItem T —
{
Name = “Acme Snow Globe",
Price = 7.50m,
Quantity = 3
}i
var key = nc.CreateKey("Jane Doe"); Create key
nc.PostEvent (id: key, Post event
eventInfo: "Add cart item",
payload: item.ToBytes());
}

In-Memory Computing Summit Silicon Valley 2017 21

Running a Streaming Method on a Single Object — Inl&iRRgie:-

// Initialization method is run when the invocation grid is first loaded:
public void Init pipeline()
{
// Set up a ReactiveX pipeline to handle adding shopping cart items:
carts.GetEventSource()
.Where(ev => ev.EventInfo == "Add cart item")
.Select(ev => Tuple.Create(ShoppingCartItem.FromBytes(ev.Payload),

ev.ObjectId.GetStringKey()))
.Subscribe(HandleCartAddEvent) ; Subscribe to stream
}

public void HandleCartAddEvent (Tuple<ShoppingCartItem, string> addCartItemTuple)
{

var custId = addCartItemTuple.Item2;
var mycart = carts.Retrieve(custId, acquirelock: tgpe) as ShoppingCart;
mycart.Items.Add(addCartItemTuple.Iteml); Add item to cart obj.

carts.Update(custId, mycart, unlockAfterUpdate: tr

}

In-Memory Computing Summit Silicon Valley 22
2017

Running a Batch Data-Parallel Method [in] iemmen e

finalResu

= carts.QueryObjects<ShoppingCart>()

Filter objects .Where(cart => cart.TotalvValue >= 20.00m) // filter carts
. Invoke (

timeout: TimeSpan.FromMinutes(1l), param: productName,
Invoke method evalMethod: (cart, pName) =>
{

var result = new Result();
result.numCarts = 1;
// see if the selected product is in the cart:

if (cart.Items.Any(item => item.Name.Equals(pName)))
result.numMatches++;
return result;

})
.Merge (
Merge results (resultl, result2) =>
{

resultl.numMatches += result2.numMatches;
resultl.numCarts += result2.numCarts;
return resultl; });

In-Memory Computing Summit Silicon Valley 23
2017

What Is a Digital Twin? [in] Saesaeg

« Term coined by Dr. Michael Grieves (U. Michigan) in 2002 for use in product life
cycle management

 Popularized in Gartner’s “Top 10 Strategic Technology Trends for 2017: Digital
Twins” for use with loT

* Definition: a digital representation of a physical entity; an encapsulated
software object that comprises (per Gartner):
« Amodel (e.g., composition, structure, metadata for an loT sensor)
- Data (e.g., sensor data, entity description)
« Unique identity (e.g., sensor identifier)
* Monitoring (e.g., alerts)

A basis for correlating and analyzing streaming data

* Significance: focuses on modeling data sourcfs
* A context for deep introspection and interacti~=

&

In-Memory Computing Summit Silicon Valley 2017 24

Examples of Digital Twins in loT lin] Saesaeg

Live System - Physical Objects Digital Twins

(Autonomous
) Vehicles

Vehicle subsystems for safety monitoring & predictive

maintenance
mn Telemetry streams

Manufacturing)
floors and Networks of machine
equipment tooling for real-time

interactive view and
predictive maintenance

Immediate feedback NN

Collections of wind
turbine
components for
remote operations
and predictive
maintenance

Wind turbines
and wind farms

;

In-Memory Computing Summit Silicon Valley 2017 25

Tracking an Elevator: A Digital Twin Demonstration ol -

Digital twin of an elevator implemented by Crossvale, Inc.:
Real-World Elevator Digital Twin

Elevator Specs

Monitoring Stats

Max People 10 Elevator Position (cm) 720 cm
. Floor position 3
Max Weight | 1000 kg
Onboard Weight (k 320 k
Floors 8 Telemetry Streams nboard Weight (kg) g
Power Consumption (kW) High

Events

Real-Time
Current Load

Operation Normal

People Weight Learning

4 people 320 kg Overweight

Descend Too-Fast

Ascend Too-Slow
Stuck Between Floors
Open Door Doors Stuck
Close Door
Ascend
Courtesy of: Check Cable
Descend y
- Vibration Limit Exceeded
Return to Lobby CBQ‘,S..?.\I?L.G.

Maintenance Required

In-Memory Computing Summit Silicon Valley 2017 26

Some Applications for Digital Twins

In-Memo
In Computurvg ¢l

A digital twin integrates incoming events with state information using domain-
specific algorithms to generate alerts:

2017

loT devices « . Device status &
" history
Medical Patient history &

monitoring { m

Cable TV ([}

N

¥
Ecommerce

st

& &

edications

Viewer preferences &
history, set-top box

atus

Shopper preferences

buying history

In- Mem Ho puting Summit Silic%ustomer status &
Y Saese g

st

Device telemetry

Heart-rate, blood-
pressure, efc.

Channel change
events, telemetry

Clickstream

events from web

site
Transactions

Analyze to predict

maintenance.

Evaluate
measurements over
time windows with
rules engine.

Cleanse & map
channel events for
reco. engine; predict
box failure.

Use ML to make
product
recommendations.

Analyze patterns to

identify probable fraud.

Maintenance
requests

Alerts to patient
& physician

Viewer recom-
mendations,
repair alerts

Product list for
web site

Alerts to
customer & bank %/

Why Use an IMDG to Host Digital Twins? [in] Saemen e

* Object-oriented data storage:
» Offers a natural model for hosting digital

twins.
« Cleanly separates domain logic from data- ‘ —> —} ‘
parallel orchestration.

» Provides rich context for processing

Streaming data. ’/-—‘ Stream Processing ’-\‘

 Integrates streaming and batch processing.

. Source — f Sink
« High performance: TLLTT
« Avoids data motion and associated network source | == | Datagrd | % | Sik
bOttleneCkS. Source — — Sink
« Fast and scales to handle large workloads. C J
 Integrated high availability: f *
« Uses data replication designed for live Batch Processing
systems.

» Can ensure that computation is high av.

In-Memory Computing Summit Silicon Valley 2017 28

Modeling the Digital Twin with OOP [in] iemens s

* Digital twin typically comprises:
* An event collection

« State information about the data
source

« Logic for managing events,
updating and analyzing state,
generating alerts

* Object oriented model: Events

 Integrates event collection with
state information.

* Encapsulates domain-specific logic
(e.g., ML, rules engine, etc.).

* Runs code where the data lives
(avoids data motion).

» Delivers fast response times.

Event Callection

LT
by
> /T /ey
AY

Digital Twin State

Alerts

In-Memory Computing Summit Silicon Valley 29
2017

Comparison to Stream-Oriented Platforms [in] SaMemeny e

Stream-oriented platforms typically
focus on analyzing the event stream:

 Lack specific support for building
digital twins and managing their state
& semantics:

Stream Pipeline

* Adds complexity in implementing digital Source | —~ @’ef,m\ —» | Operation [—» | 53:@1 —= | sk
twin models. ol Q D NS
* Can lack a clean separation between P

Storage

event orchestration and domain-specific
code.

* Do not specifically integrate state
management with stream processing:

* Usually require state data to be accesse
or updated using a separate storage tier.

* Incur network delays which can lead to
bottlenecks.

Distributed
Cache

In-Memory Computing Summit Silicon Valley 30
2017

The Effect of Data Motion on Scaling

 Data motion creates a
bottleneck that limits
throughput.

 Avoiding data motion
enables linear
scalability for growing
workloads =>
predictable, low
latency.

« Example: back-testing
stock histories in
parallel

[in]

PMI vs. Random Access Throughput Comparison
2mb time series objects

600 -

— SOSE PM| e Rzncdom Access

500 -

400

300 -

200 A

1oo<

0

Objects per Second

In-Memory
Computing !

Number of Nodes ¢ & 12 16 20 24 28
Number of Objecte 512 1024 1536 2048 2580 3072 3584

In-Memory Computing Summit Silicon Valley
2017

In-Memory

Comparison to Stream-Oriented Platforms [s A

Some advantages of the digital Stream-Oriented
twin model: Daaffu-cns Events Madal- | . -
; pomen| o [T | [T | [| R
* Auto-correlates events from each " -
data source: - EEE - - -

« Avoids the need to do this in the B ... s S

stream processing pipeline.
» Refactors processing steps to Digital Twin
perform them in on€ locat]on: Data Sources Events MOdel: Digital Twin

» Avoids possible data motion e
between Stepso [s’:um :': e s EBwms Evant2 I Evam 1 | = ,'/ (:E-:) e (E::). . ./,’l (".E.\)

* Provides a basis for transparent e ——
Scaling: tnn’-n — s [y Evunt 2 Bt | — /,' (:-)—o—[::) . ./,’ N (\f/]

» Leverages the grid’s load-balancing .. e ()
of digital twin objects across the [f:""f,_ —- - (o | o] (o] — /@)+E/— (=)
IMDG. i o

In-Memory Computing Summit Silicon Valley 32

2017

In-Memory

Ingesting Stream Data into an IMDG from Kafka (in] Gomaoing ez

IMDG can transparently scale event
reception from Kafka:

twin semantics.

IMDG transparently
scales as the
workload grows.

* IMDG can spawn Ketie . |
multiple Kafka — o rd W
connectors in a g I TP = wnticr | T | @@l T | o
“Connector Grid” A —
to handle events / = | e | @
in parallel. ."_.- sk ‘_ Con:lcettoc .if‘mi W;Grker g
IMDG can spawn a G T) T ?
“Worker Grid” to ne \
receive events and | e L] e | |
implement digital g = 1| |*®] | ™

IMDG uses key to direct events to grid

host for associated digital twin

object.

In-Memory Computing Summit Silicon Valley
2017

33

In-Memory

Code Sample (Java): Connecting an IMDG to Kafka [lnléamsiigie:-

// Create a grid startup action to start Kafka connectors:

.addKafkaServerPropertiesPath(new File("server.properties"))

GridAction connectAction = new ConnectorGridBuilder ("hr cache”

.addConnectorProperties(new File[] {new File("sink.properties")})
cbuild();

// Start the invocation grid and register the startup action:

InvocationGrid grid = new InvocationGridBuilder(“conn_grid")
.setLibraryPath("Kafka").addJar("applicationClasses.jar")
.addStartupAction(connectAction).load();

Load inv. grid

Example of connect-grid-sink.properties:
name=grid-sink Define properties
connector.class=GridSinkConnector
key.converter=PassThroughConverter
value.converter=PassThroughConverter
topics=my kafka topic
grid.namedcache.name=mycache

i

In-Memory Computing Summit Silicon Valley 34
2017

Using Kafka Partitions to Scale Event Handling

« Kafka offers partitions to scale out
handling of event messages.
 Partitions are distributed across brokers.
* Brokers process messages in parallel.

* IMDG can map Kafka partitions to grid
partitions.

* This minimizes event handling latency.

* Avoids store-and-forward within IMDG.

* How?
* IMDG specifies key mapping algorithm.
« Application specifies # Kafka partitions.

* IMDG listens to appropriate Kafka partitions
(and handles membership changes).

Kafka Brokers

RE,

RR

|
J

\'

~

In-Memo
[ﬂ Computnrvg |

Fartition 0

Parltition 2

7

At

™,

N [

Partition 3

Partition 3

(’

Partition 6

Partition 7

Partition &8

;

L

N

IMDG

SUMNIT
w7

In-Memory Computing Summit Silicon Valley
2017

35

In-Memory

Digital Twin Manages Time Windows of Events Lblcemauingi

« Each digital twin object can host a time-

ordered & windowed collection of events.

« Can be implemented as a transform on the
collection similar to streaming APlIs (e.g.
Beam)

* Event posting triggers eviction based on
windowing policy.

* Time window manager implements

Event Collection

[T
by

>

multiple windowing policies, e.g.: — > / "Bvict / / “";'.':::‘V —p
* Sliding
« Tumbling 4*

e Session Digital Twin State

* Time window manager implements queries
that supply windowed events for analysis.

In-Memory Computing Summit Silicon Valley 36
2017

Example: A Heart-Rate Monitoring Application [l

A simple medical application that monitors
heart rate telemetry from a mobile device:

* Receives heart-rate telemetry events from
patient’s mobile device.

« Digital twin holds telemetry and patient’s
history/status.

« Event posting logic tracks these events
within a collection in the digital twin.

 Analysis logic evaluates the events using
time windows on the collection and with
regard to the patient’s history and status.

* In this example, it alerts a doctor when , .
heart-rate exceeds age-specific threshold. Patient Digital

. Twin
« Updates the patient’s status.

In-Memory Computing Summit Silicon Valley 37
2017

Medical Monitoring & Alerting Architecture

In-Memory .,
Com putnr?g |57

m

« Heart-rate events flow to their respective digital twin objects for processing.
» The IMDG transparently scales to handle large humbers of patients.

Kafxe Coennector Grid | Data Grid Worker Grid Kafka
Al p '
Grid
) 'Go 1o e ma Lat | Broke
Connector R e, Worker et
@
Grid
- 1G Q — ‘So.rvito —— G g — Bruker
Conmector (@ (al Worker
N B
Grid
et | —L ls¢ Lol [l - u;¢ Lot [N
Event Sources Conmector / i) i Worker
o)

In-Memory Computing Summit Silicon Valley
2017

38

In-Memo

Code Sample (C#): Heart-Rate Monitor In] Comatiing

// Heart-rate event:
public class HeartRate

{
public string PatientID { get; set; }
public DateTime Timestamp { get; set; }
public short BeatsPerMin { get; set; }
}

// Patient (the digital twin):
public class Patient

{

Class for patient

publ%c st?lng Id { get; set; } List of HR events
public IList<HeartRate> HeartRates { get; set; }

public DateTime Birthdate { get; set; }

public int Age => (int)Math.Floor((DateTime.Now - Birthdate).TotalDays /
365);

public bool HeartIssueDetected { get; set; }

i

}

In-Memory Computing Summit Silicon Valley 39
2017

In-Memory —

Code Sample (C#): Heart-Rate Monitor [in] ig:Mermens. o

// Set up a ReactiveX pipeline in the IMDG to handle incoming heart-rate

events:
heartMonGrid.GetEventSource()

.Where(ev => ev.EventInfo == "Heart Rate Event") // look for heart-rate
events
.Select(ev => HeartRate.FromBytes(ev.Payload)) // extract heart-rate
data
.Subscribe(HandleHeartRateEvent) ; // update digital-twin
In-Memory Computing Summit Silicon Valley 40

2017

Code Sample (C#): Heart-Rate Monitor [in] ig:MesmRns sy

// Process an incoming heart rate event in the digital twin:
static void HandleHeartRateEvent(HeartRate heartRateEvent)

{

var patient = heartMonGrid.Retrieve(heartRateEvent.PatientID,

acquireLock: true)
as Patient;

// Obtaln an enumerable windowing transformation of the event collection:
rtRates = new SlidingWindowTransform<HeartRate>(
source: patient.HeartRates,
timestampSelector: hr => hr.Timestamp,
windowDuration: TimeSpan.FromMinutes(5),
every: TimeSpan.FromMinutes(1l),
startTime: DateTime.Now -

TimeSpan.FromDays(1l));

slidingHeartRates.Add (heartRateEvent); // add event and evict as
necessary
AnalyzePatient(patient, slidingHeartRates); // analyze & update patient’s
In-MgntoaytCargputing Summit Silicon Valley 41

2017

Code Sample (C#): Heart-Rate Monitor [in] igcMennen e

// Analyze patient’s state and send an alert if necessary:
static void AnalyzePatient(Patient patient,

SlidingWindowTransform<HeartRate> slidingHeartRates)

{
// See if there are any 5-minute periods in the past day when the average
// heart rate is too high. We use the sliding windows to calculate a
// moving average and vary the alert threshold depending on patient’s age:
foreach (var window in slidingHeartRates) Analyze time windows
{
if (window.Count == 0) continue; // can't average zero elements
var avg = window.Average(hr => hr.BeatsPerMin);
if ((patient.Age > 50 && avg > 130) || avg > 160) {
SendAlert ($" {patient.Id} registers high heart rate at
{window.StartTime}!");

patient.HeartIssueDetected = true;

}

In-}/\emory Computing Summit Silicon Valley 4
2017

A More Sophisticated Digital Twin Model in] ig:Memen sy

Example Model of Heart-Rate Monitoring for High Intensity Exercise
Program

« Example of data to be tracked: (;3«?
- Event collection: time-stamped heart rate telemetry, type of exercise, & &L
specific parameters (distance, strides, altitude change, etc.) W=

 Participant background/history: age, height, weight history, heart-rela]
medical conditions and medications, injuries, previous medical events \ P

« Exercise tracking: session history, average # sessions per week, average
peak heart rates, frequency of exercise types

« Aggregate statistics: average/max/min exercise tracking statistics for all participants

« Example of logic to be performed:
« Notify participant if session history across time windows indicates need to change mix.
* Notify participant if heart rate trends deviate significantly from aggregate statistics.

 Alert participant/medical personnel if heart rate analysis across time windows
indicates an imminent threat to health.

« Report aggregate statistics.

© ScaleOut Software, Inc.

In-Memory Computing Summit 2017 Company Confidential

43

In-Memory

Challenge: Edge vs. Grid Service] iemeny. s

How partition the digital twin model’s data and P
logic between edge devices and the grid service:

- Edge device: f €y
» Has limited storage and computing power, but... " J \
« Offers lowest latency to process events. - /,f’ R
» Grid service: /
 Can run sophisticated algorithms.
« Can store long event history. ;o

» Can track detailed state of the physical twin.

« Approach (akin to nervous system):

» Perform tactical processing at edge for fast
responsiveness.

» Perform strategic processing in grid service.
« Software tools are needed for transparent

Ty
In-Memory Computing Summit Silicon Valley 44
2017

Real-World Example: Tracking Cable Viewers — [lnlémi:

« Cable Company’s Goals:
* Make real-time, personalized upsell offers.
« Immediately respond to service issues & hotspots.
» Track aggregate behavior to identify patterns,
e.g.:

 Total instantaneous incoming event rate
* Most popular programs and # viewers by zip code

« Requirements:

* Track events from 10M set-top boxes with 25K
events/sec (2.2B/day).

« Correlate, cleanse, and enrich events per rules
(e.g. ignore fast channel switches, match
channels to programs) within 5 seconds.

« Refresh aggregate statistics every 10 seconds.

In-Memory Computing Summit Silicon Valley 45
2017

Example: Tracking Cable Viewers

Solution:

In-Memo
In Compum?g o

« Each set-top box is represented as a digital twin object in the IMDG.
* Holds raw & enriched event streams, viewer parameters, and box statistics.

* Use stream processing on box events to generate alerts for recommendation

engine.
* Use periodic data-p

Set-Top Boxes -\.,/ \ ’n":"".;.
' ’
,_/ /l:.

Aggregate
Statistics

/ Q

aJ:aJ.LeLaDerations on objects to generate aggregate

AWS Simulation:

25 servers
30K events/
sec

<1 sec.
latency for
alerts

Real-Time Dashboard

10s per-batch

update

In-Memory Computing Summit Silicon Valley
2017

In-Memory

Example: Ecommerce Recommendations [in] Eamening e

e Goals:

* Make real-time, personalized
recommendations for an ecommerce web site:

* Combine clickstream, shopper demographics, static ~ . Recommender =
recommendations System o

- Track aggregate site performance, e.g.: e st)
« Shopper behavior (clicks-to-cart, basket size, ...)
* Merchandizing effectiveness (best selling products)
* Requirements:
* Handle 500K+ simultaneous shoppers.
* Return recommendations within 200 msec.
« Refresh aggregate statistics every minute.

4
i
3

I1]]

In-Memory Computing Summit Silicon Valley 47
2017

Example: Ecommerce Recommendations [in] igemnen e

Solution:

« Each shopper is represented as a
digital twin object in the IMDG.

* Holds clickstream events, shopper

demographics, and ML parameters. .y ‘ E % | IMDG

» Note: digital twins can be used to a0 e
represent people. N
» Use stream processing on clickstream ”
events to generate >
recommendations. Shoprer patabases e
 Analysis logic runs an ML algorithm in —_—
real-time to generate recommendations. Merchandizer Dashboard

« Use periodic data-parallel operations
on objects to generate aggregate
statistics.

In-Memory Computing Summit Silicon Valley 48
2017

In-Memory

Recap of the Journey [in] iemeny, sy

Traditional

streaming focuses IMDGs use o0-o0
on stream datavs. | | state to integrate

. Digital twins
—data sources. _j Strebam]l?g & e:1ga]ble de]ep
atch. ’»
) introspection on

OOP on an IMDG -

provides support

IMDG scales | — | for digital twin |
performance for model. D

digital twins. o

/

Digital twins provide
a powerful model
for stream

In-Memory Computing Summit Silicon Valley yo—u_! 49

2017

In-Memory Computing for Operational Intelligence

www.scaleoutsoftware.com

