
EXACTLY ONCE STATEFUL STREAMS
THE EASY WAY

COLIN MACNAUGTHON

NEEVE RESEACH

¡ Based in Silicon Valley

¡ Creators of the X Platform™- Memory Oriented
Application Platform.

¡ Passionate about high performance computing for
mission critical enterprises.

INTRODUCTIONS

WHY DO WE CARE ABOUT STREAMING?

WHY STREAMING?

Loosely coupled, multi-agent micro services architectures are more agile, and reduce delivery
risk. Coupled with the increasing amount of business valuable data it is important that we can
move data between processes rapidly while at the same time maximizing hardware utilization

to reduce cost.

WHY EXACTLY ONCE?

Reliability coupled with ease: the less developers have to focus on handling loss and duplicates
the more robust our multi agent applications will be.

AGENDA

¡Why is Exactly Once Streaming Hard?

¡How The X Platform tackles Streaming

¡ Streaming Usecase: IoT Fleet Tracking

STREAM TRANSACTION PROCESSING APPLICATIONS

What do they do?

1. Consume Inbound Messages

2. Read / Update State

3. … and Produce Outbound Messages

Data Store

Outbound Message StreamsInbound Message Stream(s)
• Customer Traffic
• Apps: Spark, Kafka …
• Datasources: Flat files, RDBS etc.
• Devices (IoT)
• Stock Ticker

Application State
(CRUD)

Compute

Order Manager

Shipping

Risk Analysis

THE IDEAL STREAMING FRAMEWORK

¡ Fast - 10s - 100k transactions/sec, response times in microseconds or milliseconds

¡ Stateful –Ability to operate on persistent state in a transactionally consistent fashion.

¡ Reliable - no dups / no loss / atomic across failures

¡ Available – handle process / infrastructure failures

¡ Scalable - scale on demand

¡ Manageable - integrate with CI (test, build, provision)

¡ Easy - trivial to author and drop in new stream processors without concern for the above.

MICROSECONDS MATTER

A processing time of 1ms limits your throughput to 1000 messages / sec.

Same applies to any synchronous callouts in the stream.

To achieve >10k Transactions/Second you must leverage In Memory technologies

MICROSECONDS MATTER

Storage Latency Ops/Sec

L1 Cache ~1ns 1b

L2 Cache ~3ns 333m

L3 Cache ~12ns 83m

Remote NUMA Node ~40ns 25m

Main Memory ~100ns 10m

Network Read 100μs 10k

Random SSD Read 4K 150μs 6.6k

Data Center Read 500μs* 2k

Mechanical Disk Seek 10ms 100

Non Starters For Performance
We’re Talking About!

Sources: https://gist.github.com/jboner/2841832
http://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html

All State in Memory All The Time!

MEMORY ORIENTED COMPUTING!

THE CHALLENGES

¡ Exactly Once Semantics

¡ Messaging – No Loss / No Dups

¡ Storage and Access to State – No Loss / No Dups

¡ Atomicity between Message Streams and Data/Stream Stream

¡ Receive-Process-Send must be atomic for event processing
consistency across failures.

Data Store

Process
App Messages

AcksAcks

Messages

! How long until app can
process the next
event?

! !

Storage is key - must remember:

¡ What events have already been
processed

¡ Changes in state as a result of processing

¡ What results have (and have not) been
sent to the world.

TRADITIONAL TP APPLICATION ARCHITECTURE

Relational Database
Data Tier

(Transactional State
Reference Data)

Application Tier
(Business Logic)

Messaging
(HTTP, JMS)

Ø Slow
Ø Complex
Ø Does not scale with size or

volume

Ø Synchronous
Ø Slow

Ø Poor Routing
Ø Ordering Complexity

(Choke Point!)

Wrong Scaling
Strategy

Ø Slow
ØDurable
ØConsistent
ØDoes Not Scale
ØComplexLoad Balanced,

Sticky Routing

LAUNCH DATA INTO MEMORY

Data Tier
(Transactional State

Reference Data)

Application Tier
(Business Logic)

Messaging
(HTTP, JMS)

Ø Better but still slower than memory
Ø Simpler but still not pure domain
Ø Does not scale with size

Ø Synchronous
Ø Slow

Ø Poor Routing
Ø Complex Ordering

(Choke Point … still!)

Wrong Scaling
Strategy

Ø Slow
ØDurable
ØConsistent
ØDoes Not Scale
ØComplex

In-Memory Replicated

DATA GRAVITY
(DATA STRIPING + SMART ROUTING)

Data Tier
(Transactional State

Reference Data)

Application Tier
(Business Logic)

Messaging
(Publish -Subscribe)

Ø Better but still slower than memory
Ø Simpler, but not “pure” data model
Ø Scales with size and volume

(Optimal ?)

Ø Slow
ØDurable
ØConsistent
Ø Scales
ØAgile
ØComplex

In-Memory + Partitioned

Routing Strategy?

Processing Swim-lanes (ordered)

Messaging Fabric

A MICRO SERVICE ARCHITECTURE

WHY STILL SLOW AND COMPLEX

¡ How Slow?

¡ Latency

¡ 10s to 100s of milliseconds

¡ Throughput

¡ Not great with single pipe

¡ Few 1000s per second per partitioning

¡ Why Still Slow?

¡ Remoting out of process (data latency)

¡ Synchronous data updates and message acknowledgement

¡ Concurrent transactions are not cheap!

¡ Why Complex?

¡ Transaction Management still in business logic

¡ Thread management for concurrency (only way to scale)

¡ Complex Routing (how to load balance between swim lanes?)

¡ Data transformations due to lack of structured data models

STREAMING APPS ON THE X PLATFORM

üMessage Driven
ü Stateful
üMulti-Agent

üTotally Available
üHorizontally Scalable
üUltra Performant

THE X PLATFORM APPROACH

Application + Data
Tier!

Messaging
(Publish -Subscribe)

Ø Fast
ØDurable
ØConsistent
Ø Scales
Ø Simple

In Application Memory Replicated + Partitioned

Smart Routing
(messaging traffic partitioned to align with data partitions)

Processing Swim-lanes

Ø Operate at memory speeds
Ø Plumbing free domain
Ø Scales with size and volume

Application State fully
in Local Memory

Single-Threaded
Dispatch

Pipelined
Replication

“Pure”
business

logic

Hot BackupPrimary

Solace, Kafka, Falcon, JMS 2.0…

NOW WHAT IS THE PERFORMANCE?

¡ How Fast?

¡ Latency

¡ 10s of microseconds to low milliseconds

¡ Throughput

¡ 100s of thousands of transactions per second

¡ How Easy?

¡ Model Objects and State in XML, generated into Java objects and collections.

¡ Annotate methods as event handlers for message types.

¡ Single threaded processing

¡ Work with state objects treating memory as durable.

¡ Send outbound messages as “Fire And Forget”

¡ Shard applications by state, messages routed to right app.

X PLATFORM TRANSACTION PIPELINING (HA)

X

Outbound Message StreamsInbound Message Stream

X

Primary

Backup

1

2

3

4

4

5

Receive

Process

Replicate State Changes
Send Out / Ack

Inbound Acks

1

2

3

4

5

ü State as Java
ü Messages as Java
ü State 100% In Memory
ü Zero Loss or Duplication
ü Pipelined Replication
ü Async Journaling
ü Pipelined Messaging
ü Pooling for Zero Garbage

Journal
Storage

Application Handlers

1 2 …

Journal
Storage

1 2 …

THE FULL HA PICTURE

Journal Storage

DATA	
WAREHOUSE

Journal Storage

In-memory	
storage

Application	Logic
(Message	Handler)ODS / CDC

Backup

ASYNCHRONOUS
(i.e.	no	impact	on	system	throughput)

ASYNCHRONOUS
(i.e.	no	impact	on	system	throughput)

Messaging	Fabric

ASYNCHRONOUS,
Guaranteed

Messaging

Application	Logic
(Message	Handler)

In-memory	
storage

CDC

Primary

Always	Local	State	(POJO)
No	Remote	Lookup,	No	Contention,	

Single	Threaded
Ack

1

2

3

3

34

REPLICATION:
Concurrent,	background	operationATOMIC,	EXACTLY	ONCE:

Txn	Loop	from	1->4.	

ICR

REMOTE
DATA	
CENTER

NO MESSAGING
IN BACKUP ROLE

+ + +

EventHandler
final public void onAuthRequest(AuthRequestMessage message

Repository state) {
// instantiate a new cc transaction
final Transaction txn = Transaction.create();

// extract from message into a transaction
AuthRequestMessageExtractor.extract(message, txn);

// update transaction state
txn.setState(TransactionState.PendingAuth);

Customer customer = state.getCustomers().get(txn.getCustomerId()
customer.getTransactions().add(txn)

// create a fraud detection request
final FraudDetectionRequest req = FraudDetectionRequest.create();

// populate the request
FraudDetectionRequestPopulator.populate(req, txn);

// send the event
sendMessage(req);

}

DEVELOPER CONCERNS

X	Application
=

Not	required	for	vertical	
specific	models	such	as	FIX

Not	required	for	
Event	Sourcing

MESSAGES STATE CONFIGBUSINESS	LOGIC	(HANDLERS)

USE CASE - IOT

Building a Fleet Tracking System

with

The X Platform

IMPLEMENTING GEOFENCING

¡ We have a fleet of vehicles.

§ (cars, trucks, whatever)

¡ Each vehicle Should be following a route defined by Administrators

¡ Our Fleet Management System needs to:

§ Track location of vehicles to ensure routes are being followed.

§ Monitor telemetry like speed, etc.

§ If a vehicle leaves its route, trigger alerts.

FLEET GEOFENCING

Journal Based Storage

V E H I C L E M A S T E R

V E H I C L E
E V E N T P R O C E S S O R

V E H I C L E
A L E R T R E C E I V E R

V E H I C L E
E V E N T G A T E W A Y

In-Memory State

From Vehicles

Admin

THE CODE

Pure Business Logic – Exactly Once Processing

Message
Plain	Old	Java	Object
Generated	from	XML	Model

Messaging
Annotation	based	handler	discovery,
Single	Threaded

State	Management
Plain	Old	Java	objects	and	Java	
Collections

State	Management
Object	Pooling	and	
Preallocation for	Zero	Garbage

Messaging
Create	and	populate		
“Fire	and	Forget”

State	Management
Plain	Old	Java	Objects
Generated	from	XML	Model

State	Management
State	Changes	transparently	
Replicated	to	Hot
Backup	and/or	Disk	Based	Journal

IOT FLEET GEOFENCING

Location Updates Events/sec: >130k
Single Shard, 1 Processor Core, Replicated.

1ms Response Time.
Full HA (Replicated), Exactly Once

WHY X?

¡ Easy to Build
¡ Focus on domain

¡ Pure Java

¡ Easy to Maintain
¡ Pristine domain

¡ No infrastructure bleed

¡ Easy to Support
¡ Stock hardware

¡ Small Footprint

¡ Simple abstractions

¡ Easy tools

¡ Very, very fast

ü No	Compromise
Agility,	Availability,	Scalability,	Performance

Getting Started Guide

https://docs.neeveresearch.com

Get the Demo Source

https://github.com/neeveresearch/nvx-apps
We’re Listening

contact@neeveresearch.com

GETTING STARTED WITH X PLATFORM™

QUESTIONS

