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Who We Are 42 e-therapeutics

Pioneers of the next frontier in drug discovery

A unique drug discovery company headquartered in Oxford, UK, and listed on the AIM market in London
(ETX.L.)

Achieve diverse and high-performing drug hits quickly and cost efficiently

Demonstrated success in 12 diverse areas of biology, from oncology to immunology and neurodegeneration

Architects of an original, proprietary NETWORK-DRIVEN DRUG DISCOVERY
platform

A suit of powerful, custom computational tools that tap into large-scale, proprietary databases
Applies network science to tackle complex diseases

Employs data mining, machine learning, artificial intelligence, optimisation and network analysis

A professional business partner: collaborations or out-licensing self-discovered
assets
Current focus on preclinical discovery programmes in immuno-oncology

Offering a Hedgehog pathway modulation programme for out-licensing

Seeking collaborations to apply our Network-Driven Drug Discovery platform to disease areas of mutual
interest



Drug Discovery and Development

Where e-therapeutics Operates

THE STAGES OF DRUG DEVELOPMENT

42 e-therapeutics

DRUG DISCOVERY PRECLINICAL

5,000 - 10,000
COMPOUNDS

@

3 -6 YEARS

e-therapeutics

CLINICAL TRIALS

PHASE PHASE

PHASE
L 2 3

NUMBER OF VOLUNTEERS

20 - 100 100 - 500 1,000 - 5,000

6 - 7 YEARS

FDA REVIEW § MASS PRODUCTION

v

ONE FDA-
APPROVED
DRUG

0.5 -2 YEARS



Drug Discovery Process Analysis

An Industry Ripe for Innovation

Industry productivity is decreasing

1 Eroom’s law
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First wave of
biotechnology-
derived therapies

Number of drugs per billion US$ R&D spending*
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*Inflation-adjusted

Source: Jack W. Scannell et. al., Nature Reviews Drug Discovery 11, 191-200 (March 2012).

Costs are massive and increasing

Millions of 2013 §

Pre-human Clinical Total

© 1970s-early 19805 = 1980s-early 19905 » 1990s-mid 20005 = 2000s-mid 20105

Seurces: 1970s-carly 19805, Hansen (1979); 1980s.carly 19995, DiMasi et al. (1991);
1990s-mid 2000y, DiMasi ot 3k (2003); 20005-mid 20105, Current Study

Source: DiMasi et. al., Journal of Health Economics 47, 20-33 (2016)
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Late stage failures due to efficacy

b Project closures
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Network Biology 42 e-therapeutics

The Cell as a Network

Protein-Protein Interaction Network Metabolic Network

Gene Regulatory Network
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Disease Behavior is an Emergent Property of Molecular Networks

Dysregulated network module identification Pathological interaction identification in Huntington’s
disease
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Source: Schadt, E., et al. Nature Reviews Drug Discovery (2009)
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Drugs Need to Alter Phenotype

Intervening here... ...to change this
GENOTYPE PROTEOME <€ INTERACTOME >  PHENOTYPE
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DNA RNA Protein Protein-Protein Pathway Pathway-Pathway Network Networks of Higher Order Trait
Interaction Interaction Networks Networks

* Phenotype is an emergent property of cellular networks

* Networks can be viewed as the mechanistic bridge between the
molecular and the phenotype

Confidential
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Network-driven Drug Discovery Process = e-therapeutics

From Hypothesis to Compound Testing in 9 Months

P\

Gaps in available
treatment for disease

Phenotypic
screening

Identification Network Network Compound
of intervention model analysis Mapping
strategies construction
in silico Discovery Engine @

Hit to Lead
Optimisation 8
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Disease Network Perturbation Analysis e-therapeutics

Core Foundation of Discovery Process

Networks are robust to random perturbation... ... but susceptible to targeted perturbation

Random Perturbation: YouTube Video Targeted Perturbation: YouTube Video 9
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Biological Inverse Problem

Cells Measurements Network Model of Disease
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Computational Issues

‘Active Module’ Detection: Integration of molecular profiles with cellular interactions
* Formulated as an optimization problem - find high scoring sub-network

* Heuristic approaches: greedy search
* Exact approach: Prize-collecting Steiner tree formulated as linear programming problem

Maximum weight connected subgraph problem Prize-collecting Steiner tree problem

Random Scores Across Graph Maximum Scoring Subgraph Random Profits And Edge Costs Prize Collecting Steiner Tree Solution
Em " m Across Graph
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* Computationally expensive to solve: We use IBM CPLEX Optimizer
*  Multiple optimal, and suboptimal, solutions: Steiner Forests
* Future challenges: move from gene based (22k) to protein based (250k - 1.5M) networks

Ll
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Data Augmentation With Machine Learning

Matrix Completion

Platform Services .

Bioactivity Natural
Footprint Language
Classifiers with Compound Features Database Processing

Gradient Boosted
Machines

Intellegens
Neural Networks

Model
Ensembling

Classifiers with Protein Features

Gradient Boosted

Machines

G98  UNIVERSITY OF Feature
#: OXFORD

Engineering

Sparse Experimental Data

Augmented with
Predictions
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Compound Ma pping £ e-therapeutics

Computational Issues

- Requirements
- Heterogenous data: hard to make sampled data set results generalize to full data set
- Speed: slow training times kill exploratory development of machine learning solutions
- In memory requirements
- Full matrix: 15M (compounds) x 20k (proteins)
- ~1200G with Java float
- Sensible data filtering: ~300G

- Solution Used
H20.ai:

“H20 is an open source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform that allows you to build machine learning models
on big data and provides easy productionalization of those models in an enterprise environment.”

- Candeal with machine learning on full data set in-memory on our hardware (distributed 512G grid)
- Required algorithms implemented
- Datascientists prefer the environment over Spark

13



Network Analysis 4s e-therapeutics

Error vs Attack Tolerance: Biological Networks are Robust

Impact = A(Avg.Shortest Path)

@ Attack: Targeted by Degree
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* Albert, R., H. Jeong, and A. L. Barabasi. 2000. “Error and Attack Tolerance of Complex Networks.” Nature 406 (6794): 378-82.

14



Network Analysis 4s e-therapeutics
Algorithms

Core algorithms used in drug discovery process
* All can be formulated as embarrassingly parallel problems

* Perturbation Analysis
* Sequentially remove nodes from a network and measure change in network structure
* Generate data for random vs targeted comparison
» Used to calibrate other analysis for specific networks - identifies region of random effect

* Impact Maximization
* Find the optimal set of nodes (proteins) that maximally disrupt a network

* Compound Impact Ranking
* Rank all entries in our compound database by their impact on a network

GridGain (Ignite) compute grid
* Infrastructure for parallel distributed compute
* Map-reduce or fork-join extended from multiple threads to multiple JVMs and physical machines
* Hadoop:
» Standard map-reduce framework (when we implemented)
* Focused on massive data sets - not in-memory - which isn’t our situation
» Batch focused - key requirement was for on-line, user triggered processing

15



Distributed Fork-Join or Simple Map-Reduce Q& etherapeutics

Generic Algorithm
A - Master node

....... Worker nodes - distributed across multiple machines

G smmmmm. Compute task:
« divideinto multiple jobs
» collate results from multiple jobs

Compute jobs: perform calculations on isolated data

Multiple concurrent \\ //

analysis runs from _
multiple users 16




Network Analysis

Perturbation

Goal: characterize network robustness behavior via perturbation

Total repeats

42 e-therapeutics

« One compute task per repeat

* Onecomputejob

» Calculate impact for a specific node set size
* Alljobs:

* impact calculations for node sets of all sizes
*  Example below

* 300 network calculations per repeat

* Error bars generated by repeats

Generated data:
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Network Analysis

Impact Maximization

Goals:
* Find protein sets that have a large effect on network structural coherence and so on the targeted biological process

* Robustness properties of biological networks mean the vast majority of protein sets have little effect
« Compound mapping to those protein sets finds potential therapeutics

Algorithmic Approach
« Exhaustive approach unfeasible due to combinatoric explosion: C;9°° ~ 3.4 x 10%?
» Stochastic approximation or metaheuristics
* Stochastic aspect facilitates the exploration of solution space: more likely to find global maxima

* Genetic algorithm
 Specific, population based stochastic approximation approach
» Based (very loosely) on natural selection

* Population based = embarrassingly parallel

18



Network Analysis

Impact Maximization via Genetic Algorithm

Goal: find protein set(s) that maximize network impact

asymptotic
convergence

42 e-therapeutics

One compute task per “generation”

Generates population of potential solutions (nodes to remove)
e Initially randomly
* Then by “breeding” best solutions of previous generation

Compute job: evaluation of one member of population
All jobs: evaluation of whole population
Evaluation: quantification of the effect of node removal

19
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Implementation Lessons

1. Minimize Data Distribution

Naive (first) implementation
* Master node generates population of perturbed networks
* Networks are distributed to worker nodes
« Worker nodes perform network calculations (e.g. shortest path analysis)

 Parallel distributed implementation was slower than serial
» Cost of data distribution swamped gain due to parallel calculations

Current Solution
* Full, intact network is distributed to all worker nodes once at the start

* Master node generates population of bit vectors indicating which nodes to remove
* Bit vectors are distributed to worker nodes

* Intact network is shared between worker nodes and multiple threads on each worker node
* Immutable data structure for network
* Percolation operation is construction of new network not removal of nodes from intact network.

20
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Implementation Lessons
2. Scalability Depends on Compute Job Homogeneity

Scalability Measurements
* Measure time taken for one actual compute run on grids of different sizes

*  Minimum: 1 physical machine with 24 cores
* Maximum: 4 physical machines with 96 cores
* Ratio of time taken relative to minimum grid size

Scaleability

—o— Ideal —e— Perturbation —o— Genetic Algorithm

©

Speed Ratio

21



Implementation Lessons
2. Scalability Depends on Compute Job Homogeneity

Genetic Algorithm
* Excellent scalability
« Scalability generalizes across compute job parameters
* Homogenous jobs within a task
* Removing the same number of nodes from the same network
* Calculating the same network statistics

Perturbation Analysis
* Scalability is poor
* Jobs within a task are much more heterogenous
» Each job removes a different number of nodes from the network
* Tuning the task and job boundaries for this analysis is hard

Future

« Job stealing SPI: potentially allows redistribution of jobs when some are slow and others are fast

S

Fastest possible task
time is slowest job

£ e-therapeutics

22



Network Analysis 4s e-therapeutics

Compound Impact Ranking

* Goal: evaluate network impact of every compound in our database

/ A; * Compute task: set of compounds (from database)

* Multiple tasks: full compound set pagination

------- e —— +  Compute job: evaluation of a subset of compounds
* Setsize determined by hardware knowledge

: Generate data:
all compoundsin

virtual screening
library (~13M)

o 5000 10000 15000 20000 25000 23

Ranked Compounds




Implementation Lessons

3. Data access can dominate

Scalability Measurements: Networks of Different Size

Scaleability

~0— Ideal —@— Small —@— Medium —o— Large

Speed Ratio

A% 7

Cores

96

)
o

e-therapeutics
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3. Data access can dominate

CPU Use
100.00%

Compound Impact Ranking o Small Medium
Small and Medium Network

50.00%

25.00%

100.00%

Compound Impact Ranking o
Large Network

50.00%

25.00%

100.00%
75.00%
50.00%

Genetic Algorithm

25.00%

25
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3. Data access can dominate

Scalability depends on network size

Small networks
« compute time swamped by database access time

Larger networks
* database access still reduces CPU utilization

We expected network calculations to dominate data access
* Measure, don’t assume

Future
* Integrate in-memory data grid
» Job heterogeneity still an issue although currently dominated by database access

26
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Summary

Three different business processes in production for over four years

Technical advantages of using GridGain

* Removes the need to implement parallel distributed processing infrastructure

 Facilitates development focus on business problems

* Lessons learnt
 Implications of parallel distributed processing do not disappear - see Sun’s “fallacies of distributed computing”
» Powerful, easy to use API can lead to naive solutions
* Minimize data transfer from master to workers
* Need to be very aware of how parameters affect compute job homogeneity
» Database access can affect even very CPU intensive jobs

Business advantages of solution
* Remove computational parts as bottlenecks in full process
* Change working model from batch driven to real-time and exploratory
+ Disease biologists have definitely noticed and it has changed the way they work
* Increased ability to explore more hypotheses
* We can still improve
* Algorithm choice can be driven ease of mapping to fork-join/map-reduce

27



Future 42 e-therapeutics

Migrate from old GridGain version to Apache Ignite

Investigate new capabilities to improve speed
« Job stealing to deal with heterogenous job distributions
* In-memory data grid to improve 10 bound compute

On-demand compute grid architecture
» Qur use patterns are very spikey - in silico is only a small part of full discovery process

* Investigate use of cloud platforms to provide compute grid as and when needed
* Combine with general platform migration to Kubernetes

28



Future

General to Specific Purpose Computing

Academic collaborations:
* FANTASI (Fast Network Analysis in Silicon)
» co-funded EPSRC project with uSystems Research Group (Andrey Mokhov) at Newcastle University
* Investigate hardware approaches to network analysis using FPGAs
* POETS (Partially Ordered Event Triggered Systems)
« EPSRC funded project involving Cambridge, Imperial College, Newcastle, and Southampton Universities
* Investigate compute architectures consisting of extremely large number of small cores

FANTASI

Compiler from network

DSL to hardware

t Hardware

Network
analysis results

)
o

e-therapeutics
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Future 42 e-therapeutics
FANTASI: Shortest Path Analysis

Sou% Sou% o o

* Successfully implemented on FPGA
» Acceleration factors of over three orders of magnitude

.—
7 steps in 100MHz is 70 nanoseconds, which * Qver 2500x for network of 3500 nodes

@ | isroughly the same time it takes fora « Network size limited by hardware and layout algorithms
conventional machine to access memory >0 « POETS project for larger networks
and process a single node. * Algorithms limited to those that can be mapped to hardware

Source

30
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CPU Utilization: 10 can dominate

Genetic Algorithm Compound Impact Ranking




