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Who We Are
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Pioneers of the next frontier in drug discovery 

Architects of an original, proprietary NETWORK-DRIVEN DRUG DISCOVERY 
platform 

A professional business partner: collaborations or out-licensing self-discovered 
assets

A unique drug discovery company headquartered in Oxford, UK, and listed on the AIM market in London 
(ETX.L.)

Achieve diverse and high-performing drug hits quickly and cost efficiently

Demonstrated success in 12 diverse areas of biology, from oncology to immunology and neurodegeneration

A suit of powerful, custom computational tools that tap into large-scale, proprietary databases

Applies network science to tackle complex diseases

Employs data mining, machine learning, artificial intelligence, optimisation and network analysis

Current focus on preclinical discovery programmes in immuno-oncology

Offering a Hedgehog pathway modulation programme for out-licensing

Seeking collaborations to apply our Network-Driven Drug Discovery platform to disease areas of mutual 
interest 



Drug Discovery and Development
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Where e-therapeutics Operates

e-therapeutics



Drug Discovery Process Analysis
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An Industry Ripe for Innovation

Eroom’s law

Source: Cook et. al., Nature Reviews Drug Discovery 13, 419-431 (2014)Source: DiMasi et. al., Journal of Health Economics 47, 20-33 (2016) 

Industry productivity is decreasing Costs are massive and increasing Late stage failures due to efficacy



Network Biology
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The Cell as a Network

Metabolic NetworkProtein-Protein Interaction Network

Signal Transduction Pathways Gene Regulatory Network



Network Biology
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Disease Behavior is an Emergent Property of Molecular Networks

Dysregulated network module identification

Source: Schadt, E., et al. Nature Reviews Drug Discovery (2009)

Pathological interaction identification in Huntington’s 
disease

Source: Tourette, C., et al. Journal Biological Chemistry (2014)



Network Biology
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Drugs Need to Alter Phenotype

DNA RNA Protein Protein-Protein  
Interaction

Pathway Pathway-Pathway 
Interaction

Network Networks of 
Networks

Higher Order 
Networks

Trait

GENOTYPE PHENOTYPEPROTEOME INTERACTOME

…to change thisIntervening here…

• Phenotype is an emergent property of cellular networks
• Networks can be viewed as the mechanistic bridge between the 

molecular and the phenotype 

Confidential



Network-driven Drug Discovery Process
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From Hypothesis to Compound Testing in 9 Months

Network 
model 

construction

Compound 
Mapping

Hit to Lead 
Optimisation

Identification
of intervention 

strategies

Network
analysis

Phenotypic 
screening

05

Gaps in available 
treatment for disease

in silico Discovery Engine

02 03 0401

Confidential



Disease Network Perturbation Analysis
Core Foundation of Discovery Process
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Networks are robust to random perturbation… … but susceptible to targeted perturbation

Random Perturbation: YouTube Video Targeted Perturbation: YouTube Video



Network Model Construction
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Biological Inverse Problem

Healthy
Vs

Diseased

Cells Measurements Network Model of Disease



Network Model Construction
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Computational Issues

‘Active Module’ Detection: Integration of molecular profiles with cellular interactions
• Formulated as an optimization problem – find high scoring sub-network
• Heuristic approaches: greedy search
• Exact approach: Prize-collecting Steiner tree formulated as linear programming problem

• Computationally expensive to solve: We use IBM CPLEX Optimizer
• Multiple optimal, and suboptimal, solutions: Steiner Forests
• Future challenges: move from gene based (22k) to protein based (250k – 1.5M) networks

Prize-collecting Steiner tree problemMaximum weight connected subgraph problem



Compound Mapping
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Data Augmentation With Machine Learning

Naïve Bayes

Matrix Completion

Classifiers with Compound Features

Gradient Boosted 
Machines

Neural Networks

Classifiers with Protein Features

Feature 
Engineering

Gradient Boosted 
Machines

Bioactivity 
Footprint 
Database

Platform Services

Model 
Ensembling

Natural 
Language 

Processing

Sparse Experimental Data Augmented with 
Predictions

Intellegens



Compound Mapping

- Requirements
- Heterogenous data: hard to make sampled data set results generalize to full data set
- Speed: slow training times kill exploratory development of machine learning solutions
- In memory requirements

- Full matrix: 15M (compounds) x 20k (proteins) 
- ~1200G with Java float
- Sensible data filtering: ~300G 

- Solution Used
- H20.ai: 

- “H2O is an open source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform that allows you to build machine learning models 
on big data and provides easy productionalization of those models in an enterprise environment.”

- Can deal with machine learning on full data set in-memory on our hardware (distributed 512G grid)
- Required algorithms implemented
- Data scientists prefer the environment over Spark

13

Computational Issues



Network Analysis
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Error vs Attack Tolerance: Biological Networks are Robust

• Albert, R., H. Jeong, and A. L. Barabasi. 2000. “Error and Attack Tolerance of Complex Networks.” Nature 406 (6794): 378–82.

𝐼𝑚𝑝𝑎𝑐𝑡 = ∆ 𝐴𝑣𝑔. 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡	𝑃𝑎𝑡ℎ

Attack: Targeted by Degree
Error: Targeted Randomly

vs



Network Analysis

Core algorithms used in drug discovery process
• All can be formulated as embarrassingly parallel problems

• Perturbation Analysis
• Sequentially remove nodes from a network and measure change in network structure
• Generate data for random vs targeted comparison
• Used to calibrate other analysis for specific networks – identifies region of random effect

• Impact Maximization
• Find the optimal set of nodes (proteins) that maximally disrupt a network

• Compound Impact Ranking
• Rank all entries in our compound database by their impact on a network

GridGain (Ignite) compute grid
• Infrastructure for parallel distributed compute
• Map-reduce or fork-join extended from multiple threads to multiple JVMs and physical machines
• Hadoop: 
• Standard map-reduce framework (when we implemented)
• Focused on massive data sets - not in-memory – which isn’t our situation
• Batch focused – key requirement was for on-line, user triggered processing

15

Algorithms



Distributed Fork-Join or Simple Map-Reduce
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Generic Algorithm

Master node

Worker nodes – distributed across multiple machines

Compute task: 
• divide into multiple jobs
• collate results from multiple jobs

Compute jobs: perform calculations on isolated data

Multiple concurrent 
analysis runs from
multiple users



Network Analysis
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Perturbation

• One compute task per repeat

• One compute job
• Calculate impact for a specific node set size

• All jobs:
• impact calculations for node sets of all sizes

• Example below
• 300 network calculations per repeat
• Error bars generated by repeats

Generated data:

Total repeats

Goal: characterize network robustness behavior via perturbation



Network Analysis

Goals:
• Find protein sets that have a large effect on network structural coherence and so on the targeted biological process
• Robustness properties of biological networks mean the vast majority of protein sets have little effect
• Compound mapping to those protein sets finds potential therapeutics

Algorithmic Approach
• Exhaustive approach unfeasible due to combinatoric explosion: 𝐶678777 	≈ 	3.4 ∗ 10?8	
• Stochastic approximation or metaheuristics
• Stochastic aspect facilitates the exploration of solution space: more likely to find global maxima

• Genetic algorithm
• Specific, population based stochastic approximation approach
• Based (very loosely) on natural selection

• Population based ⇒ embarrassingly parallel

18

Impact Maximization



Network Analysis
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Impact Maximization via Genetic Algorithm

• One compute task per “generation”
• Generates population of potential solutions (nodes to remove)

• Initially randomly
• Then by “breeding” best solutions of previous generation

• Compute job: evaluation of one member of population
• All jobs: evaluation of whole population
• Evaluation: quantification of the effect of node removal

asymptotic 
convergence

Goal: find protein set(s) that maximize network impact



Implementation Lessons

Naïve (first) implementation
• Master node generates population of perturbed networks
• Networks are distributed to worker nodes
• Worker nodes perform network calculations (e.g. shortest path analysis)

• Parallel distributed implementation was slower than serial
• Cost of data distribution swamped gain due to parallel calculations

Current Solution
• Full, intact network is distributed to all worker nodes once at the start
• Master node generates population of bit vectors indicating which nodes to remove
• Bit vectors are distributed to worker nodes

• Intact network is shared between worker nodes and multiple threads on each worker node
• Immutable data structure for network
• Percolation operation is construction of new network not removal of nodes from intact network.

20

1. Minimize Data Distribution



Implementation Lessons

Scalability Measurements
• Measure time taken for one actual compute run on grids of different sizes
• Minimum: 1 physical machine with 24 cores
• Maximum: 4 physical machines with 96 cores

• Ratio of time taken relative to minimum grid size

21

2. Scalability Depends on Compute Job Homogeneity



Implementation Lessons

Genetic Algorithm
• Excellent scalability
• Scalability generalizes across compute job parameters
• Homogenous jobs within a task
• Removing the same number of nodes from the same network
• Calculating the same network statistics

Perturbation Analysis
• Scalability is poor
• Jobs within a task are much more heterogenous
• Each job removes a different number of nodes from the network
• Tuning the task and job boundaries for this analysis is hard

Future
• Job stealing SPI: potentially allows redistribution of jobs when some are slow and others are fast

22

2. Scalability Depends on Compute Job Homogeneity

Fastest possible task
time is slowest job 



Network Analysis
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Compound Impact Ranking

• Compute task: set of compounds (from database)
• Multiple tasks: full compound set pagination

• Compute job: evaluation of a subset of compounds
• Set size determined by hardware knowledge

Generate data:
all compounds in
virtual screening 

library (~13M)

• Goal: evaluate network impact of every compound in our database



Implementation Lessons
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3. Data access can dominate 

Scalability Measurements: Networks of Different Size



Implementation Lessons
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3. Data access can dominate 

Genetic Algorithm

Compound Impact Ranking
Small and Medium Network

Compound Impact Ranking
Large Network

Small Medium



Implementation Lessons

Scalability depends on network size

Small networks
• compute time swamped by database access time

Larger networks
• database access still reduces CPU utilization

We expected network calculations to dominate data access
• Measure, don’t assume

Future
• Integrate in-memory data grid
• Job heterogeneity still an issue although currently dominated by database access
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3. Data access can dominate 



Summary

Three different business processes in production for over four years

Technical advantages of using GridGain
• Removes the need to implement parallel distributed processing infrastructure
• Facilitates development focus on business problems
• Lessons learnt
• Implications of parallel distributed processing do not disappear – see Sun’s “fallacies of distributed computing”
• Powerful, easy to use API can lead to naïve solutions
• Minimize data transfer from master to workers
• Need to be very aware of how parameters affect compute job homogeneity
• Database access can affect even very CPU intensive jobs

Business advantages of solution
• Remove computational parts as bottlenecks in full process
• Change working model from batch driven to real-time and exploratory
• Disease biologists have definitely noticed and it has changed the way they work
• Increased ability to explore more hypotheses
• We can still improve

• Algorithm choice can be driven ease of mapping to fork-join/map-reduce

27



Future

Migrate from old GridGain version to Apache Ignite

Investigate new capabilities to improve speed
• Job stealing to deal with heterogenous job distributions
• In-memory data grid to improve IO bound compute 

On-demand compute grid architecture 
• Our use patterns are very spikey – in silico is only a small part of full discovery process
• Investigate use of cloud platforms to provide compute grid as and when needed
• Combine with general platform migration to Kubernetes

28



Future

Academic collaborations:
• FANTASI (Fast Network Analysis in Silicon)
• co-funded EPSRC project with μSystems Research Group (Andrey Mokhov) at Newcastle University
• Investigate hardware approaches to network analysis using FPGAs

• POETS (Partially Ordered Event Triggered Systems)
• EPSRC funded project involving Cambridge, Imperial College, Newcastle, and Southampton Universities 
• Investigate compute architectures consisting of extremely large number of small cores

FANTASI

29

General to Specific Purpose Computing 



Future
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FANTASI: Shortest Path Analysis

7 steps in 100MHz is 70 nanoseconds, which 
is roughly the same time it takes for a 
conventional machine to access memory 
and process a single node.

• Successfully implemented on FPGA
• Acceleration factors of over three orders of magnitude

• Over 2500x for network of 3500 nodes
• Network size limited by hardware and layout algorithms

• POETS project for larger networks
• Algorithms limited to those that can be mapped to hardware



Thank you
jonny.wray@etherapeutics.co.uk



Implementation Lessons
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CPU Utilization: IO can dominate 

Genetic Algorithm Compound Impact Ranking


