

Network-Driven Drug Discovery: An Application of In-Memory Distributed Processing

Jonny Wray, PhD Head of Discovery Informatics

jonny.wray@etherapeutics.co.uk

Who We Are

Pioneers of the next frontier in drug discovery

A unique drug discovery company headquartered in Oxford, UK, and listed on the AIM market in London (ETX.L.)

Achieve diverse and high-performing drug hits quickly and cost efficiently

Demonstrated success in 12 diverse areas of biology, from oncology to immunology and neurodegeneration

Architects of an original, proprietary NETWORK-DRIVEN DRUG DISCOVERY platform

A suit of powerful, custom computational tools that tap into large-scale, proprietary databases

Applies network science to tackle complex diseases

Employs data mining, machine learning, artificial intelligence, optimisation and network analysis

A professional business partner: collaborations or out-licensing self-discovered assets

Current focus on preclinical discovery programmes in immuno-oncology

Offering a Hedgehog pathway modulation programme for out-licensing

Seeking collaborations to apply our Network-Driven Drug Discovery platform to disease areas of mutual interest

Drug Discovery and Development

Where e-therapeutics Operates

THE STAGES OF DRUG DEVELOPMENT

e-therapeutics

Drug Discovery Process Analysis

An Industry Ripe for Innovation

Industry productivity is decreasing

*Inflation-adjusted

Source: Jack W. Scannell et. al., Nature Reviews Drug Discovery 11, 191-200 (March 2012).

Costs are massive and increasing

Sources: 1970s-carly 1980s, Hansen (1979); 1980s-carly 1990s, DiMasi et al. (1991); 1990s-mid 2000s, DiMasi et al. (2003); 2000s-mid 2010s, Carrent Study

Source: DiMasi et. al., Journal of Health Economics 47, 20-33 (2016)

Late stage failures due to efficacy

Source: Cook et. al., Nature Reviews Drug Discovery 13, 419-431 (2014)

Network Biology

The Cell as a Network

e-therapeutics

Network Biology

Disease Behavior is an Emergent Property of Molecular Networks

Dysregulated network module identification

Nature Reviews | Drug Discovery

Source: Schadt, E., et al. Nature Reviews Drug Discovery (2009)

Pathological interaction identification in Huntington's disease

Source: Tourette, C., et al. Journal Biological Chemistry (2014)

Network Biology

Drugs Need to Alter Phenotype

- Phenotype is an emergent property of cellular networks
- Networks can be viewed as the mechanistic bridge between the molecular and the phenotype

e-therapeutics

Network-driven Drug Discovery Process

From Hypothesis to Compound Testing in 9 Months

Disease Network Perturbation Analysis

e-therapeutics

Core Foundation of Discovery Process

Networks are robust to random perturbation...

Random Perturbation: YouTube Video

... but susceptible to targeted perturbation

Targeted Perturbation: YouTube Video

Network Model Construction

e-therapeutics

Biological Inverse Problem

Network Model Construction

Computational Issues

'Active Module' Detection: Integration of molecular profiles with cellular interactions

- Formulated as an optimization problem find high scoring sub-network
- Heuristic approaches: greedy search
- Exact approach: Prize-collecting Steiner tree formulated as linear programming problem

Maximum weight connected subgraph problem

Prize-collecting Steiner tree problem

Random Profits And Edge Costs Across Graph

- Computationally expensive to solve: We use IBM CPLEX Optimizer
- Multiple optimal, and suboptimal, solutions: Steiner Forests
- Future challenges: move from gene based (22k) to protein based (250k 1.5M) networks

Compound Mapping

Data Augmentation With Machine Learning

Compound Mapping

Computational Issues

- Requirements

- Heterogenous data: hard to make sampled data set results generalize to full data set
- Speed: slow training times kill exploratory development of machine learning solutions
- In memory requirements
 - Full matrix: 15M (compounds) x 20k (proteins)
 - ~1200G with Java float
 - Sensible data filtering: ~300G

- Solution Used

- H20.ai:
 - "H2O is an open source, in-memory, distributed, fast, and scalable machine learning and predictive analytics platform that allows you to build machine learning models on big data and provides easy productionalization of those models in an enterprise environment."
- Can deal with machine learning on full data set in-memory on our hardware (distributed 512G grid)
- Required algorithms implemented
- Data scientists prefer the environment over Spark

Error vs Attack Tolerance: Biological Networks are Robust

• Albert, R., H. Jeong, and A. L. Barabasi. 2000. "Error and Attack Tolerance of Complex Networks." *Nature* 406 (6794): 378–82.

e-therapeutics

Algorithms

Core algorithms used in drug discovery process

- All can be formulated as embarrassingly parallel problems
- Perturbation Analysis
 - Sequentially remove nodes from a network and measure change in network structure
 - Generate data for random vs targeted comparison
 - Used to calibrate other analysis for specific networks identifies region of random effect
- Impact Maximization
 - Find the optimal set of nodes (proteins) that maximally disrupt a network
- Compound Impact Ranking
 - Rank all entries in our compound database by their impact on a network

GridGain (Ignite) compute grid

- Infrastructure for parallel distributed compute
- Map-reduce or fork-join extended from multiple threads to multiple JVMs and physical machines
- Hadoop:
 - Standard map-reduce framework (when we implemented)
 - Focused on massive data sets not in-memory which isn't our situation
 - Batch focused key requirement was for on-line, user triggered processing

Distributed Fork-Join or Simple Map-Reduce

Generic Algorithm

e-therapeutics

Perturbation

Goal: characterize network robustness behavior via perturbation

Impact Maximization

Goals:

- Find protein sets that have a large effect on network structural coherence and so on the targeted biological process
- Robustness properties of biological networks mean the vast majority of protein sets have little effect
- Compound mapping to those protein sets finds potential therapeutics

Algorithmic Approach

- Exhaustive approach unfeasible due to combinatoric explosion: $C_{20}^{1000} \approx 3.4 * 10^{41}$
- Stochastic approximation or metaheuristics
- Stochastic aspect facilitates the exploration of solution space: more likely to find global maxima
- Genetic algorithm
 - Specific, **population based** stochastic approximation approach
 - Based (very loosely) on natural selection
 - Population based ⇒ embarrassingly parallel

asymptotic convergence

Impact Maximization via Genetic Algorithm

Goal: find protein set(s) that maximize network impact

- One compute task per "generation"
- Generates population of potential solutions (nodes to remove)
 - Initially randomly
 - Then by "breeding" best solutions of previous generation

- Compute job: evaluation of one member of population
- All jobs: evaluation of whole population
- Evaluation: quantification of the effect of node removal

1. Minimize Data Distribution

Naïve (first) implementation

- Master node generates population of perturbed networks
- Networks are distributed to worker nodes
- Worker nodes perform network calculations (e.g. shortest path analysis)
- Parallel distributed implementation was slower than serial
- Cost of data distribution swamped gain due to parallel calculations

Current Solution

- Full, intact network is distributed to all worker nodes once at the start
- Master node generates population of bit vectors indicating which nodes to remove
- Bit vectors are distributed to worker nodes
- Intact network is shared between worker nodes and multiple threads on each worker node
 - Immutable data structure for network
 - Percolation operation is construction of new network not removal of nodes from intact network.

2. Scalability Depends on Compute Job Homogeneity

Scalability Measurements

- Measure time taken for one actual compute run on grids of different sizes
 - Minimum: 1 physical machine with 24 cores
 - Maximum: 4 physical machines with 96 cores
- Ratio of time taken relative to minimum grid size

Scaleability

2. Scalability Depends on Compute Job Homogeneity

Genetic Algorithm

- Excellent scalability
- Scalability generalizes across compute job parameters
- Homogenous jobs within a task
 - Removing the same number of nodes from the same network
 - Calculating the same network statistics

Perturbation Analysis

- Scalability is poor
- Jobs within a task are much more heterogenous
 - Each job removes a different number of nodes from the network
 - Tuning the task and job boundaries for this analysis is hard

Future

• Job stealing SPI: potentially allows redistribution of jobs when some are slow and others are fast

Fastest possible task time is slowest job

Compound Impact Ranking

• Goal: evaluate network impact of every compound in our database

3. Data access can dominate

Scalability Measurements: Networks of Different Size

3. Data access can dominate

Compound Impact Ranking Small and Medium Network

Compound Impact Ranking Large Network

Genetic Algorithm

3. Data access can dominate

Scalability depends on network size

Small networks

• compute time swamped by database access time

Larger networks

• database access still reduces CPU utilization

We expected network calculations to dominate data access

• Measure, don't assume

Future

- Integrate in-memory data grid
- Job heterogeneity still an issue although currently dominated by database access

Summary

Three different business processes in production for over four years

Technical advantages of using GridGain

- Removes the need to implement parallel distributed processing infrastructure
- Facilitates development focus on business problems
- Lessons learnt
 - Implications of parallel distributed processing do not disappear see Sun's "fallacies of distributed computing"
 - Powerful, easy to use API can lead to naïve solutions
 - Minimize data transfer from master to workers
 - Need to be very aware of how parameters affect compute job homogeneity
 - Database access can affect even very CPU intensive jobs

Business advantages of solution

- Remove computational parts as bottlenecks in full process
- Change working model from batch driven to real-time and exploratory
 - Disease biologists have definitely noticed and it has changed the way they work
 - Increased ability to explore more hypotheses
 - We can still improve
- Algorithm choice can be driven ease of mapping to fork-join/map-reduce

Future

Migrate from old GridGain version to Apache Ignite

Investigate new capabilities to improve speed

- Job stealing to deal with heterogenous job distributions
- In-memory data grid to improve IO bound compute

On-demand compute grid architecture

- Our use patterns are very spikey *in silico* is only a small part of full discovery process
- Investigate use of cloud platforms to provide compute grid as and when needed
- Combine with general platform migration to Kubernetes

General to Specific Purpose Computing

Academic collaborations:

- FANTASI (Fast Network Analysis in Silicon)
 - co-funded EPSRC project with µSystems Research Group (Andrey Mokhov) at Newcastle University
 - Investigate hardware approaches to network analysis using FPGAs
- POETS (Partially Ordered Event Triggered Systems)
 - EPSRC funded project involving Cambridge, Imperial College, Newcastle, and Southampton Universities
 - Investigate compute architectures consisting of extremely large number of small cores

Future

e-therapeutics

FANTASI: Shortest Path Analysis

- Successfully implemented on FPGA
- Acceleration factors of over three orders of magnitude
 - Over 2500x for network of 3500 nodes
- Network size limited by hardware and layout algorithms
 - POETS project for larger networks
- Algorithms limited to those that can be mapped to hardware

Thank you

jonny.wray@etherapeutics.co.uk

CPU Utilization: IO can dominate

