
KAPPA, LAMBDA
&

MY JOURNEY FROM LEGACY
TO NEW

MICHAEL VAN DER HAVEN



OUTLINE

¡ This is not about...
¡ Exciting times (but they’ve always been!)
¡ The Legacy Bias
¡ The kind of stuff we develop
¡ The legacy we deal with
¡ Lambda & Kappa
¡ The next new (without killing off our legacy)



THIS IS NOT ABOUT….



TIMES ARE EXCITING!

1997 Throwback:

¡ In memory compute? You were king of the hill with a 64 MB PC

¡ Networking required ‘Nuts & Bolts’

¡ The big divide: Concurrent computing / Grids / OpenMP & MPI only for research 
facilities and Fortune 1000 companies

2005 – Now:

¡ Internet à Cloud à Services à Cheap Data à Cheap processing à IoT à
NoSQL à Data Lakes àAdvanced Analytics à Machine Learning

¡ Open, Cheap and with the right credit card: available in a few hours or days



LEGACY BIAS

¡ We expect: Agility, Scalability, Cheap, Replacable, etc.

¡ Legacy Perception:





LEGACY

¡ Old

¡ Why did we ever build that?

¡ Hard to maintain

¡ Super heavy

¡ Monoliths

¡ $$$

¡ Etc.



LIVE WITH IT

¡ $$$ spent with a reason

¡ Actively used to take $$$ business decisions (in our case: multi-billion $)

¡ Business Owners are happy enough

OR

¡ Not willing to spend $$$ on development again

¡ Etc.



WHAT MY TEAM BUILDS



SUBSURFACE MODELLING AND OPTIMIZATION

¡ Collection of Disciplines that model
¡ The layers in the ground

¡ The faults and horizons

¡ Structural Model

¡ Physical and Chemical Rock Properties

¡ Physical and Chemical Hydro Carbon Properties

¡ Etc.



OUR LEGACY CHALLENGES

¡ We work together with our customer on building Modelling & Optimization platform
Addressing these challenges:

¡ Traditional separately operating disciplines

¡ Work on one model à File hand over to next discipline

¡ Separate tools

¡ Big tools à 1 to 2 million lines of code each

¡ Actively developed monoliths!

¡ Brought to market by different vendors à limited control over implementation patterns

¡ All data integration is ‘ingestion’ based



GOALS

¡ No more files!

¡ Data at your finger-tips

¡ Single data view

¡ Each discipline can immediately cooperate with the other

¡ Single user experience

¡ Iterative modelling: Low Fidelity à Medium Fidelity à High Fidelity



CHALLENGE: DATA, SIZE AND ACCESSIBILITY

¡ Model Sizes run up to +/- 50 GB

¡ Real challenge is in ‘uncertainty’:

¡ Few thousand realizations per model

¡ ‘Traditionally’ not a problem: limited to the simulator that would throw away 
‘unwanted results’

¡ Integrated tools that have ‘ingestion’ as main ‘implementation pattern’

¡ Data Explosion!



IMPLEMENTATION PATTERN

¡ Start out with connecting two applications
¡ Early problem of PtP identified

¡ Moved to Service Bus

¡ Monoliths ‘Behave’ like Service:
¡ Introduce Edge API exposing services

¡ Compute Monoliths in background containers

¡ N.B. Has a notion of a ‘wrangling’ pattern, but
unfortunately we do not have control over
the vendor’s tools



RESULT: CURRENT STATE OF AFFAIRS

Data Tier

Data APIs

Business
Services

User Interface

Sim. 
Engine

Fusion

Sim 
Engine
Server

Static
App 

Server
Spark ELK

Tensor-
Flow

Service APIs

Spotfire; Tableau; Tensor Boards; etc.

Log Data
(MongoDB)

Sim 
Repository
(SQL Server)

Static 
Repository
(SQL Server)

Results Data
(MongoDB)

Project Data
(MongoDB)

Data ‘Flow’ Kafka

Dyn. UIAnalytical 
AddonsStatic

RESTLegacyData APIs LegacyData APIs



BUT WHERE IS THE IN-MEMORY PART?

¡ The stream is our memory bus

¡ Spark is our ‘Intelligent’ Framework



LAMBDA? KAPPA?

¡ Lambda Architecture
Three main layers:
1. Speed

2. Batch

3. Serving



LAMBDA CHARACTERISTICS

Data Tier

Data APIs

Business
Services

User Interface

Sim. 
Engine

UI

Sim 
Engine
Server

Static
App 

Server
Spark ELK

Tensor-
Flow

Service APIs

Spotfire; Tableau; Tensor Boards; etc.

Log Data
(MongoDB)

Dynamic 
Repository
(SQL Server)

Static 
Repository
(SQL Server)

Results Data
(MongoDB)

Project Data
(MongoDB)

Data ‘Flow’ Kafka

Dyn. UIStatic

RESTLegacyData APIs LegacyData APIs

Analytical 
Addons



KAPPA?

¡ Kappa is (i.m.o.) about processing and creating 
results directly on the stream

a. Instead of letting the stream be a carrier to fast & 
slow components and let them create results

b. Process data on stream and let the results become a 
stream



UNCERTAINTY LEADS TO MORE KAPPA, LESS LAMBDA

¡ 80% of data produced is Simulated Results & Logs

¡ Simulated Results are created by uncertainty runs

¡ Choose Parameters (e.g. the length of a well perforation and the direction of rock permeability)

¡ Fill in a number of values with an uncertainty design (e.g. Monte Carlo / Box Bhenken / Etc.)

¡ Example: Parameter A has a distribution of 10 values, and parameter B has a distribution of 250 values

¡ Result: Table with values for column for Parameter A and Parameter B à 2,500 rows

¡ Each row is a simulation

¡ After running 2,500 simulations, determine which value had an impact (e.g. to match previous 
Quarter’s production results)

¡ Normally: 25 values are picked as valid à Rest of data is thrown away (that’s 120 TB ‘temporal’ data 
on average)



KAPPA ADVANTAGE

¡ Given: All Logs and Results are pushed onto Kafka

¡ Old Situation (Lambda):

¡ Used to have connectors that ingest results into MongoDB

¡ Then based on trigger à 25 cases are maintained, 2,475 cases are deleted from MongoDB

¡ Software to write results

¡ Software to read results

¡ Software to delete results and ‘earmark’ results that need to be maintained, etc.

¡ New Situation (Kappa):

¡ Results are on topic with retention time of few days

¡ Trigger of ‘maintain’ cases is processed in KSQL and stored on new topic

¡ Non-valid results are automatically discarded after retention period

¡ Less Software (just KSQL) à Higher performance à Less maintenance (disk space)



BUT….. WHERE IS IGNITE?

¡ Not there yet, but…..

Scenarios:

¡ Legacy data components that require shared state for sessions
¡ Built 8+ years ago in .Net

¡ Can run on only one machine à Bottleneck à Ditch ‘homegrown’ state engine and replace by in-
memory database

¡ One vendor uses SQL server to ‘core dump’ state after given events (e.g. time-steps)
¡ SQL Server is ‘misused’ as ORM dump (every class has a table, no ref integrity)

¡ Recognized that state is relevant for run-time and should be easily shareable among nodes (e.g. MPI 
context)

¡ After ‘run’ state can be removed à Scalable in-memory database that accepts ORM



RECAP

¡ When we started out:
Didn’t think about Lambda or Kappa

¡ Queuing system was evaluated because we bumped our head on PtP

¡ Queuing is somehow hard for developers (it takes a while before a developer embraces queues over 
RPC)
¡ Queuing had therefore potential impact Architecture & Developer attitude

¡ Think about Queuing
¡ Usage Patterns (routed vs produced only / producer&consumer pattern / many consumers / etc.)

¡ Lambda started to emerge but adds complexity in number of components

¡ Kappa started to emerge, simpler but requires to be better aware of what you are doing (retention 
times need to be carefully chosen!)

¡ Lambda & Kappa live together!
Lambda & Kappa are enablers and have achieved integration in a cost-effective manner (in fact, an 
integrated deployment turns out to be cheaper in run-time than the separate non-integrated tools)



MY JOURNEY TO THE NEXT NEW

¡ They say that the young can learn from the old and vice-versa, the same goes for IT
¡ Legacy is often a given, and even if you’re on a migration path it can take a long time or is just 

too expensive
(yes, sometimes you simply wait until that colleague reaches his pension)

¡ Try to embrace the new and incorporate into your project:
¡ You don’t always have to change jobs to work with cool new tech

¡ Unless you have a boss that is in the ‘I’ve been in this business 20+ years, and I know better’

¡ The $$$ spent (trust me, in our tools it is a lot of $$$) are not spent for nothing
(modelling physics and chemistry is quite hard, and uncertainty doesn’t make it easier)

¡ Our legacy has transformed into a bit of hype (e.g. Holistic Advanced Analytics and Machine Learning 
are all of a sudden possible)



THANK YOU!


