
KAPPA, LAMBDA
&

MY JOURNEY FROM LEGACY
TO NEW

MICHAEL VAN DER HAVEN



OUTLINE

¡ This is not about...
¡ Exciting times (but they’ve always been!)
¡ The Legacy Bias
¡ The kind of stuff we develop
¡ The legacy we deal with
¡ Lambda & Kappa
¡ The next new (without killing off our legacy)



THIS IS NOT ABOUT….



TIMES ARE EXCITING!

1997 Throwback:

¡ In memory compute? You were king of the hill with a 64 MB PC

¡ Networking required ‘Nuts & Bolts’

¡ The big divide: Concurrent computing / Grids / OpenMP & MPI only for research 
facilities and Fortune 1000 companies

2005 – Now:

¡ Internet à Cloud à Services à Cheap Data à Cheap processing à IoT à
NoSQL à Data Lakes àAdvanced Analytics à Machine Learning

¡ Open, Cheap and with the right credit card: available in a few hours or days



LEGACY BIAS

¡ We expect: Agility, Scalability, Cheap, Replacable, etc.

¡ Legacy Perception:





LEGACY

¡ Old

¡ Why did we ever build that?

¡ Hard to maintain

¡ Super heavy

¡ Monoliths

¡ $$$

¡ Etc.



LIVE WITH IT

¡ $$$ spent with a reason

¡ Actively used to take $$$ business decisions (in our case: multi-billion $)

¡ Business Owners are happy enough

OR

¡ Not willing to spend $$$ on development again

¡ Etc.



WHAT MY TEAM BUILDS



SUBSURFACE MODELLING AND OPTIMIZATION

¡ Collection of Disciplines that model
¡ The layers in the ground

¡ The faults and horizons

¡ Structural Model

¡ Physical and Chemical Rock Properties

¡ Physical and Chemical Hydro Carbon Properties

¡ Etc.



OUR LEGACY CHALLENGES

¡ We work together with our customer on building Modelling & Optimization platform
Addressing these challenges:

¡ Traditional separately operating disciplines

¡ Work on one model à File hand over to next discipline

¡ Separate tools

¡ Big tools à 1 to 2 million lines of code each

¡ Actively developed monoliths!

¡ Brought to market by different vendors à limited control over implementation patterns

¡ All data integration is ‘ingestion’ based



GOALS

¡ No more files!

¡ Data at your finger-tips

¡ Single data view

¡ Each discipline can immediately cooperate with the other

¡ Single user experience

¡ Iterative modelling: Low Fidelity à Medium Fidelity à High Fidelity



CHALLENGE: DATA, SIZE AND ACCESSIBILITY

¡ Model Sizes run up to +/- 50 GB

¡ Real challenge is in ‘uncertainty’:

¡ Few thousand realizations per model

¡ ‘Traditionally’ not a problem: limited to the simulator that would throw away 
‘unwanted results’

¡ Integrated tools that have ‘ingestion’ as main ‘implementation pattern’

¡ Data Explosion!



IMPLEMENTATION PATTERN

¡ Start out with connecting two applications
¡ Early problem of PtP identified

¡ Moved to Service Bus

¡ Monoliths ‘Behave’ like Service:
¡ Introduce Edge API exposing services

¡ Compute Monoliths in background containers

¡ N.B. Has a notion of a ‘wrangling’ pattern, but
unfortunately we do not have control over
the vendor’s tools



RESULT: CURRENT STATE OF AFFAIRS
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BUT WHERE IS THE IN-MEMORY PART?

¡ The stream is our memory bus

¡ Spark is our ‘Intelligent’ Framework



LAMBDA? KAPPA?

¡ Lambda Architecture
Three main layers:
1. Speed

2. Batch

3. Serving



LAMBDA CHARACTERISTICS
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KAPPA?

¡ Kappa is (i.m.o.) about processing and creating 
results directly on the stream

a. Instead of letting the stream be a carrier to fast & 
slow components and let them create results

b. Process data on stream and let the results become a 
stream



UNCERTAINTY LEADS TO MORE KAPPA, LESS LAMBDA

¡ 80% of data produced is Simulated Results & Logs

¡ Simulated Results are created by uncertainty runs

¡ Choose Parameters (e.g. the length of a well perforation and the direction of rock permeability)

¡ Fill in a number of values with an uncertainty design (e.g. Monte Carlo / Box Bhenken / Etc.)

¡ Example: Parameter A has a distribution of 10 values, and parameter B has a distribution of 250 values

¡ Result: Table with values for column for Parameter A and Parameter B à 2,500 rows

¡ Each row is a simulation

¡ After running 2,500 simulations, determine which value had an impact (e.g. to match previous 
Quarter’s production results)

¡ Normally: 25 values are picked as valid à Rest of data is thrown away (that’s 120 TB ‘temporal’ data 
on average)



KAPPA ADVANTAGE

¡ Given: All Logs and Results are pushed onto Kafka

¡ Old Situation (Lambda):

¡ Used to have connectors that ingest results into MongoDB

¡ Then based on trigger à 25 cases are maintained, 2,475 cases are deleted from MongoDB

¡ Software to write results

¡ Software to read results

¡ Software to delete results and ‘earmark’ results that need to be maintained, etc.

¡ New Situation (Kappa):

¡ Results are on topic with retention time of few days

¡ Trigger of ‘maintain’ cases is processed in KSQL and stored on new topic

¡ Non-valid results are automatically discarded after retention period

¡ Less Software (just KSQL) à Higher performance à Less maintenance (disk space)



BUT….. WHERE IS IGNITE?

¡ Not there yet, but…..

Scenarios:

¡ Legacy data components that require shared state for sessions
¡ Built 8+ years ago in .Net

¡ Can run on only one machine à Bottleneck à Ditch ‘homegrown’ state engine and replace by in-
memory database

¡ One vendor uses SQL server to ‘core dump’ state after given events (e.g. time-steps)
¡ SQL Server is ‘misused’ as ORM dump (every class has a table, no ref integrity)

¡ Recognized that state is relevant for run-time and should be easily shareable among nodes (e.g. MPI 
context)

¡ After ‘run’ state can be removed à Scalable in-memory database that accepts ORM



RECAP

¡ When we started out:
Didn’t think about Lambda or Kappa

¡ Queuing system was evaluated because we bumped our head on PtP

¡ Queuing is somehow hard for developers (it takes a while before a developer embraces queues over 
RPC)
¡ Queuing had therefore potential impact Architecture & Developer attitude

¡ Think about Queuing
¡ Usage Patterns (routed vs produced only / producer&consumer pattern / many consumers / etc.)

¡ Lambda started to emerge but adds complexity in number of components

¡ Kappa started to emerge, simpler but requires to be better aware of what you are doing (retention 
times need to be carefully chosen!)

¡ Lambda & Kappa live together!
Lambda & Kappa are enablers and have achieved integration in a cost-effective manner (in fact, an 
integrated deployment turns out to be cheaper in run-time than the separate non-integrated tools)



MY JOURNEY TO THE NEXT NEW

¡ They say that the young can learn from the old and vice-versa, the same goes for IT
¡ Legacy is often a given, and even if you’re on a migration path it can take a long time or is just 

too expensive
(yes, sometimes you simply wait until that colleague reaches his pension)

¡ Try to embrace the new and incorporate into your project:
¡ You don’t always have to change jobs to work with cool new tech

¡ Unless you have a boss that is in the ‘I’ve been in this business 20+ years, and I know better’

¡ The $$$ spent (trust me, in our tools it is a lot of $$$) are not spent for nothing
(modelling physics and chemistry is quite hard, and uncertainty doesn’t make it easier)

¡ Our legacy has transformed into a bit of hype (e.g. Holistic Advanced Analytics and Machine Learning 
are all of a sudden possible)



THANK YOU!


