In-Memory
I n gompunng EUROPE

UMMIT 5018

BIG DATA FOR SMALL DOLLARS.

NEIL STEVENSON
| 1:55,25T JUNE

o 4

ABOUT ME — NEIL STEVENSON

y /i
/ = neil@hazelcast.com

4

= Solution architect for Hazelcast

= Started in IT in 1989

“ Has maintained programs written before he was born
“ Fond of coffee , beer, and coffee

= Mainly a Java person,some Golang

® Remembers the launch of C++

» Knows what IEFBR 14 is

[in]esiens

SUM M'l'? e

/e
BIG DATA
“"Who remembers the "Y2K Problem™ ?

= Data records looked like “SW1V1EQ 1155180625”.

= POSTCODE, byte[8]
= TIME, byte[4]
= DAY, byte[6]

= This was BIG data! Ve could not afford 8 bytes for day

[iness

SUMMITIRN

BIG DATA

“ BIG DATA == Data we cannot afford to store

= Storage costs nopey
" 35539
w LEEEE

= Storage is cheaper and bigger than Y2K days

= But data is bigger too, increasing at a faster rate, so the problem isn’t going away

[inSr -

BIG DATA
= BIG DATA == Data we cannot afford to store

= Storage costs time

= Store then compute, results arrive too late, for some applications

= Even with in-memory storage!

= So we need in-memory computing!

[inSr -

UNIX
y/

“ This is a Unix command“ls | grep neil | wc -1".

= “1s” == no input, output is list of files

= Discrete, output is produced then command ends

" “grep neil” == filter for input containing the word neil, output the matches

= Continuous, output produced as input arrives

" “wc -1" == count the input, output the count

= Discrete, output produced when input exhausted

= It’s a simple chain of processing, no intermediate storage

ES%MM M’I'? e

o 4

1S | GREP NEIL | WC -L”
y /i

/

= Really it’s this:

[in]esiens

SUMMITIRN

1S | GREP NEIL | WC -L”

= But why not this 227

0-0

e
20

The “tee” command ??

— 4

7 'LS | GREP NEIL | WC -L”
y /i
for @)=
6 6 S
@ - -0~

“ (Two source nodes) \ 6 /

SUMMITII

1S | GREP NEIL | WC -L”

y /i
~0
6 ~
0-0-0-9-
(Feedback) \ 6 /

SUMMITIIE

-

Or this ?

ENTER HAZELCAST JET!

hazelcast JET

/

“ Java based

= Open source

= Apache 2 licensed

= Distributed Streaming Analytics Engine

= Integrates trivially with Hazelcast IMDG

= Really good, says Neil that works for Hazelcast ©

[in]esamy

SUM M'l'? e

ENTER HAZELCAST JET!

hazelcast JET

= Based around ggyclic graphs.
= No feedback loops

ENTER HAZELCAST JET!

/ hazelcast JET

= But distributed acyclic graphs.

= If you have 2 CPUs, run it twice

= Different VM or same JVM @
Q-0

A\

| Fn_
@3>0

. Y
'ENTER HAZELCAST JET!
y /i

hazelcast JET

y
z

= But distributed acyclic graphs.
= If you have 2 CPUs, run it twice

= Different VM or same JVM

= Data can cross instances

[infsy .

THE UBIQUITOUS “WORD COUNT”

Pipeline pipeline = Pipeline.create();

pipeline.drawFrom(Sources.<Integer, String>map ("hamlet"))

flatMap (entry -> Traversers.traverseArray (Pattern.compile ("\\W+") .split(entry.getValue())))

.map(String::toLowerCase)

.filter(s -> s.length () > 3)

.groupingKey (DistributedFunctions.wholeItem())
.aggregate (AggregateOperations.counting())

drainTo (Sinks.map ("count")) ;

® Quiz time: Can you spot the mistake 22727

nEﬂSg$AJQ?E”

THE UBIQUITOUS “WORD COUNT”

Pipeline pipeline = Pipeline.create();

pipeline.drawFrom(Sources.<Integer, String>map ("hamlet"))

flatMap (entry -> Traversers.traverseArray (Pattern.compile ("\\W+") .split(entry.getValue())))

.map(String::toLowerCase)

.filter(s -> s.length () > 3)

.groupingKey (DistributedFunctions.wholeItem())
.aggregate (AggregateOperations.counting())

drainTo (Sinks.map ("count")) ;

= Answer: Filter on length is more efficient if it precedes “toLowerCase () ”. Performance cost!!! Not trivial

nEﬂSg$AJQ?E”

ﬂ'TO BE OR NOT TO BE, THAT IS THE QUESTION

y /4

Data ingest is in parallel

To be

Or not to be

[infsy .

ﬂ'TO BE OR NOT TO BE, THAT IS THE QUESTION

y /4

Data ingest is in parallel

- @

[infsy .

ﬂ'TO BE OR NOT TO BE, THAT IS THE QUESTION

y /4

Data ingest is in parallel

Data egest is in parallel

= _.if you want

[infsy .

ﬂ'TO BE OR NOT TO BE, THAT IS THE QUESTION

y /4

Data ingest is in parallel

Data egest is in parallel

= _.if you want

[infsy .

ﬂ'TO BE OR NOT TO BE, THAT IS THE QUESTION

y /4

Data ingest is in parallel

Data egest is in parallel

= _.if you want

[infsy .

MEANWHILE
Z

= Ok, we have fast streaming processing....

“ Next we need some data, BIG data

WHAT IS BIG

@ Superbowl 2018
= Eagles v Patriots, 103.4 million viewers

B h : n m/n r- |-lii-tv-ratings/

= Superbowl 2018 Half-Time Show

= Justin Timberlake, 106.6 million viewers

= haedmencv.cnn.com/2018/02/0 mediasuncrbowlratingsinde.nin!

“ World Cup 2014

= Argentina v Germany final, 1.013 billion viewers

https://www.cbsnews.com/news/super-bowl-lii-tv-ratings/
http://money.cnn.com/2018/02/05/media/super-bowl-ratings/index.html
https://www.fifa.com/worldcup/news/2014-fifa-world-cuptm-reached-3-2-billion-viewers-one-billion-watched--2745519

THE 2014 WORLD CUP FINAL

% ® The final had 280 MILLION ONLINE viewers

@ Many of these have Twitter accounts and will be tweeting
= 674 million tweets about the final, before, during and after

" Peak at 618,000 a minute (when Germany scored)

ES%MM M’I'? e

= Twitter is already storing the tweets, but we’d like to analyse them

" We want to do sentiment analysis
= Who do the fans think will win before the game starts ?

= Who do the fans think will win while the game is in progress ?

“ Why do we want to do this ?
® Place a bet on the winner ! Make SMALL DOLLARS

[inSr -

THE PIPELINE

= Twitter firehose, tweets by hashtag <= could be parallel input across multiple JVMs

= | Filter out if not ASCII

“ | Enrich by locating a named team

= | Filter out if no team named

= | Filter out if team named not playing in this game

“ | Enrich with sentiment

[1
| Increment running totals <= ossible contention point, unless routing is used

ES%MM M’I'? e

THE PIPELINE

= Twitter firehose, tweets by hashtag

= | Filter out if not ASCII

“ | Enrich by locating a named team

= | Filter out if no team named <= Route here on team name

= | Filter out if team named not playing in this game

“ | Enrich with sentiment <= Or is here better ?

“ | Increment running totals

ES%MM M’I'? e

" DEMO TIME

/Iﬂ

= Let’s see code

" java -jar target/worldcup-0.0.1-SNAPSHOT. jar

® Uruguay v Russia is today at 3pm

[in] ety .

DEMO TIME

/ « Join in!!

" Uruguay v Russia is today at 3pm
* Hashtag "“#URURUS”

[inSr -

DOES THIS WORK ?

= No

=O0r not yet, the business logic is too naive

/

= But the idea is sound

= Download the code and fix it yourself ©

[inSr -

— 4
DOES THIS WORK ?

“ Some successes!
= Argentina v Croatia, after 18 minutes the sentiment at 0-0 was Argentina to lose. Final score 0-3
“ Iran v Spain, at half-time and 0-0 the sentiment was for draw. Final score was 0-1, but Iran had a goal disallowed

“ Uruguay v Saudi Arabia, at half-time and 0-0 the sentiment was for Uruguay. Final score was 1-0.

“ But most of the others were wrong, so I’'m not betting any money on the "predictions”

[iness

SUM M?? e

SUMMARY

= Stream processing == processing before storage

= Someone else has stored already, eg. an IMDG
“ Can't afford cost of storage

= Can'’t afford time for storage

= Distributed pipeline is a way to think about processing as a chain of simpler steps

= Can benefit from machine parallisation

ES%MM M’I'? e

SUMMARY
= peil@hazelcast.com

/

. hitos:/sithul nei world

= You will need your own Twitter credentials

= Questions ?

mailto:neil@hazelcast.com
https://github.com/neilstevenson/worldcup

