In-Memory
In gcmpunng EARRO P E

UMM T 5058

Integrating Data-Parallel Analytics into Stream-Processing
Using an In-Memory Data Grid

About the Speaker [in]Someaing .

UMMITI507%

* Dr. William Bain, Founder & CEO of ScaleOut Software:
* Email: wbain@scaleoutsoftware.com
* Ph.D. in Electrical Engineering (Rice University, 1978)
» Career focused on parallel computing — Bell Labs, Intel, Microsoft

e 3 prior start-ups, last acquired by Microsoft and product now ships as
Network Load Balancing in Windows Server

e ScaleOut Software develops and markets In-Memory Data Grids,
software for:

* Scaling application performance with

in-memory data storage @ ScaleOut Software

* Analyzing live data in real time with
in-memory computing

* Thirteen+ years in the market; 450+ customers, 12,000+ servers

In-Memory Computing Summit Europe 2018 2

Agen da m%&‘aﬂ%ﬂﬁ%

How In-Memory Computing Creates the Next Generation in
Stream-Processing

* Goals and challenges for stream-processing

* Adding context: stateful stream-processing

* Overview of in-memory data grids (IMDGs)

e Digital twin model for stream-processing

 Why use an IMDG: integrated event processing and data-parallel analysis
* Example use cases

* Detailed code sample: runners with smart watches

e Performance benefits

EEEEEE

Goals for Stream-Processing [in]Someaing .

* Goals:
* Process incoming data streams from many (1000s) of sources.
* Analyze events for patterns of interest.
* Provide timely (real-time) feedback and alerts.
* Provide data-parallel analytics for aggregate

statistics and feedback.
 Many applications: T T
* Internet of Things (loT)

Medical monitoring
Logistics
Financial trading systems

Ecommerce recommendations

Event Sources

In-Memory Computing Summit Europe 2018 4

. . In-Memory
Example: Ecommerce Recommendations [in]Someaing .

1000s of online shoppers:

* Each shopper generates a clickstream of a
products searched. e =
e Stream-processing system must: ()
* Correlate clicks for each shopper. L e diste ReakTime (S5
. Recommendations @
* Maintain a history of clicks during a shopping

session. Shopper

. . Clickstream
* Analyze clicks to create new recommendations
within 100 msec.

* Analysis must:
* Take into account the shopper’s preferences and
demographics.

* Use aggregate feedback on collaborative
shopping behavior.

In-Memory Computing Summit Europe 2018

Providing Recommendations in Real Time

lins

In-Memory
omputing
SUMMITIS

* Requires scalable stream-processing to analyze each click and respond in <100ms:
* Accept input with each event on shopper’s preferences.
* Provide aggregate feedback on best-selling products.

Fe

Set Preferences

<

LG
High]
Rating]
Best Selling]
Most Viewed]
Yes | 0

Yes |

Stainless steel |

Freestanding]

No |

No]

T A G G) AT AT |))

Astamatin 1

Suggestions for This Purchase

|

LG -27.7 Cu. Ft.
French Door-in-Door
Refrigerator - Black
stainless steel

(2)
On sale: $2,299.99

LG - 27.8 4-Door
French Door
Refrigerator - Black
stainless steel

(54)
On sale: $2,199.99

=
L

I5

ez ©

LG - 27.8 4-Door
French Door
Refrigerator -
Stainless steel

(54)
On sale: $2,099.99

LG - InstaView™
Door-in-Door® 23.5
Cu. Ft. French Door
Counter-Depth
Refrigerator -

(195)
On sale: $2,799.99

o 60

W

o 6

LG-27.7 Cu. FL.
French Door-in-Door
Refrigerator - Matte
Black Stainless Steel
(2)
On sale: $2,349.99

LG - 27.9 French Door
Refrigerator -
Stainless steel

(77)
On sale: $1,999.99

RO

18

PE

In-Memory Computing Summit Europe 2018

mory
uting
MIT

Providing Aggregate Metrics

ROPE
18

s
mp
n SUM

Nm
oC

Sca Ieout InSite Home Dashboard Manage Rules

* Must aggregate statistics for all P m———
S h O p p e rS : 2::(-::; :: Active Total Active Cart Value :‘;‘Z:; S— Latest Vzaﬁlui

750 $27,800.00 Max Clicks to Successful Recommendation 9
. . .
[] T k I_t h p p g b h Max Clicks to First View 10
rack real-time shopping behavior. e e .
° C h a rt key p u rC h a Si n g tre n d S . 6820 350 Average Clicks from Cart to Purchase 2.00
Max Clicks from Cart to Purchase 8
. TO 5 ata GIance % Reduction in Average Clicks to Cart 25.00%
* Enable merchandizer to create P B
. . Top 5 Product Categories by Revenue ¥ | ® Now At:| 00 v || 00 ¥|UTC — = e
otential Conversion Rate .00%
p ro m Ot I O n S dyn a m I Ca | Iy' Ton 5 Product Cat N Potential Revenue Increase $2,000,000.00
0j Toduc ategories evenue
’ ! ” Average Purchase Size $250.00
* Aggregate statistics can be
% Carted Products Recommended 95.00%
% Purchased Products Recommended 89.00%

shared with shoppers:

* Allows shoppers to obtain :
collaborative feedback. « WA

% Purchased Products Recommended
100 ¢

* Examples include most viewed e S s
and best selling products. S

0
40900pm 4:39.00pm 5:09:00pm 5:39:804pr00 pm

Time of Day

In-Memory Computing Summit Europe 2018 7

Challenges for Stream-Processing Architectures [in]Smeuing ..

SUMMITI56%%

* Basic stream-processing architecture:

Data Sources Events
N Stream Processing Pipeline
Source A| —~ o o o Event 3 Event 2 Event 1
\/
R
SourceB| —= o o o Event 3 Event 2 Event 1 Source — = — | Data Stream | — — Sink
\/
/\
SourceC| —— o o @ Event 3 Event 2 Event 1
\/

* Challenges:

* How efficiently correlate events from each data source?
How combine events with relevant state information to create the necessary context for analysis?

How embed application-specific analysis algorithms in the pipeline?

How generate feedback/alerts with low latency?
How perform data-parallel analytics to determine aggregate trends?

In-Memory Computing Summit Europe 2018 8

Adding Context to Stream-Processing [in]éomeiing .

SUMMI T!507%

 Stateful stream-processing platforms add “unmanaged” data storage to the pipeline:
* Pipeline stages perform transformations in a sequence of stages from data sources to sinks.

» Data storage (distributed cache, database) is accessed from the pipeline by application code in an
unspecified manner.

e E : E [
xamples: Apama (CEP), Apache Flink, Storm Stream Pipeline

. Data . Data -
[) PrObIemS. Source — — Operation — — Sink

* There is no software architecture ? ¢
for managing state information.
e This adds complexity to the Storage

application.
Cach
* Creates a network bottleneck. ae

e Does not address need for
data-parallel analytics.

Database

In-Memory Computing Summit Europe 2018

. . . In-Memory
Lambda Architecture: Batch Parallel Analytics [in]Someaing .

2018

* Lambda architecture separates stream-processing (“speed layer”) from data-parallel
analytics (“batch layer”).

* Creates queryable state, but:

* Does not enhance context
for stateful stream processing.

* Does not perform data-parallel analytics
online for immediate feedback.

* Does not lead to a “Hybrid Transactional
and Analytics Processing” (HTAP)
architecture.

Speed (Real-Time)
Processing

s e
et

B Responses >
Cluster -

Batch Processing

https://commons.wikimedia.org/w/index.php?curid=34963987

How combine stream-processing
with state to simplify design,
maximize performance, and
enable fast data-parallel analytics?

In-Memory Computing Summit Europe 2018 10

In-Memory Data Grid (IMDG) [in]éomeiing .

SUMMI TI505%

IMDG provides a powerful platform for stateful stream-processing.
What is an IMDG? Logical view

* IMDG stores live, object-oriented data:

» Uses a key/value storage model for large object
collections.

* Maps objects to a cluster of commodity servers with
location transparency.

* Has predictably fast (<1 msec.) data access and updates.
* Designed for transparent scaling and high availability

* IMDG integrates in-memory computing with
data storage:
* Uses object-oriented execution model.
 Leverages the cluster’s computing power. Physical view

 Computes where the data lives to avoid network bottlenecks. IMDG Storage Model

In-Memory Computing Summit Europe 2018 11

How an IMDG Can Integrate Computation [in]Someaing .

* Each grid host runs a worker
process which executes
application-defined methods
on stored objects.

* The set of worker processes is
called an invocation grid (1G).

* |G usually runs language-
specific runtimes (JVM, .NET).

* IMDG can ship code to the IG

workers.

* Key advantages for IGs: e |BEsER 000 0 gmwes 0000 EBE

* Follows object-oriented model. o RIS SRR RN BRRR O

* Avoids network bottlenecks by f:f:f:f:f:\;:;:;:;:;:;:-:-:;:;:;:/fffffffffffffffffffff:;:;:;:;:;:-:-:;:;:;fffffff:f:fffffffffff:\;:;:;:;:-:;:;:;:-:;:;ffffffffff

moving computing to the data. - Fost o Hest2o o Host3

* Leverages IMDG's cores & " InMemoryDataGrd
servers.

In-Memory Computing Summit Europe 2018 12

IMDG Runs Event Handlers for Stream-Processing

Event handlers run independently for

each incoming event:

* IMDG directs event to a specific object

using ReactiveX for low latency.

* IMDG executes multiple event

handlers in parallel for high

throughput.

Client
N

Client
N

Client

Invoke method

Return Results

Invoke method

Return Results

Invoke method

Return Results

4)

L
IG

Worker

Ay

i

Grid
Service

o

Local

Lo

IG
Worker

Memory Y.

=)

LY

i

N

Grid
Service

IG
Worker

i

Grid
Service

In-Memory Computing Summit Europe 2018

13

IMDG Executes Data-Parallel Computations [in]Someaing .

Method execution implements a
batch job on an object collection:

c o f o - D
e Client runs a single method on all LS e Lo
biects i llecti IG IG IG
ODJECLS In a cofliection. Worker Worker Worker
e Execution runs in parallel across the
orid.
e Results are merged and returned to m * m * m *
the client. ‘ N (O % & %
. Invoke parallel method Grid Grid Grid
Client Service Service Service
Return merged results s ~N - N s ~
\ X e
Local Local Local
\\ Memory . A Memory) k\ Memory J

In-Memory Computing Summit Europe 2018 14

A Basic Data-Parallel Execution Model [in]Someaing .

A fundamental model from
parallel supercomputing: .

* Run one method (“eval”) | | | | | | - .
in parallel across many (e | [om | [om | [ow | [om i | [om |
data objects. | | | ! : } } v

e Optionally merge the

results.
e Binary combining is a N S N S
special case, but...

* ItrunsinlogN time to — .

enable scalable speedup

In-Memory Computing Summit Europe 2018 15

. . In-Memory
MapReduce Builds on This Model [in]Someaing .
* Implements “group-by”
computations.
* Example: “Determine average
RPM for all windmills by region source dataset
(NE, NW, SE, SW).” v Y Y v | v Y v
| (e) (o) (o] [ow) (o) [ow | (o) [0
* Runs in two data-parallel N0 OO 4\ AN
phases (map, reduce):
* Map phase repartitions and < o o >
optionally combines source partitions\,}\ I //$/
data.
* Reduce phase analyzes each | | |

data partition in parallel.

e Returns results for each
partition.

result dataset

In-Memory Computing Summit Europe 2018 16

UMM

Distributed ForEach: Another Data-Parallel Model [in]éemsiing ...

Host O Host 1

localinit localinit : localinit localinit
* Task 0 Task 1 T * Task 0 Task 1 *
result body — body It g It body — body result
body — body body — body

body

I B
IR
R N
IR
Q»_/T./;’_/T

body

0
L_iource Collection‘_J Liource Collection)
localFinally localFinally
resu
g\oba\ merge
\
localFinally

| ——

i

result

In-Memory Computing Summit Europe 2018 17

Reduced GC Time with Distributed ForEach In|€omeuing

SUMMITI561"¢

PMI Distributed ForEach

(V] (V]
() File Action View Window Help x () File Action View Window Help x
e 2@ Bw B
© Pesformance EEENMEXIAEGEELIL © Pesformance EEENMEXIAEEELIL
4 mM Tools 4 | Monitoring Tools
B Performance Monitor . B Performance Monitor o
b [Data Collector Sets e b [Data Collector Sets e
[j Reports [j Reports
90 90
80 - 80
704 M 70
60 60
501 i 501
40 40
304 ’ 304
20 20
104 104
446:12PM 4:46:23PM 4:46:33PM 4:46:43PM 4:46:53PM 4:4T:03PM 447:13PM 4:47:23PM 4:47:33 PM 4. 447:50PM 4:42:54PM 4:43:05PM 4:43:15PM 4:43:25PM 4:43:35PM 4:43:45PM 4:43:55PM 4:44:05PM 4:44:15PM 4. 44432PM
Last | 61.627 Average | 56.186 Minimum | 0,000 Maximum | 97.452 Duration | 1:40 Last 0378 Average | 0294 Minimum | 0,000 Maximum | 0.640 Duration | 1:40
Show Color Scale Counter Instance Parent Object Computer Show Color Scale Counter Instance Parent Object Computer
% Time in GC Distributed... --- .NET CLR Memory \\MARKW-2012R2 % Time in GC Distributed... --- .NET CLR Memory \\MARKW-2012R2

In-Memory Computing Summit Europe 2018 18

Stream-Processing with the Digital Twin Model

* Created by Michael Grieves; popularized by Gartner

* Represents each data source with an IMDG object
that holds:

* An event collection

e State information about the data source

Logic for analyzing events, updating state, and
generating alerts

* Benefits:

Offers a structured approach to stateful stream-processing.

Automatically correlates incoming events by data source.
Integrates all relevant context (events & state).

Enables easy deployment of application-specific logic (e.g.,
ML, rules engine, etc.) for analysis and alerting.

Provides domain for aggregate analysis and feedback.

In-Memory
In Compu"ng EUROPE

SUMMI T!507%

}

J

V=74

e

Ay

Digital Twin

State

-

In- M7(ry Data Grid

Gio)
cm ®

o\

Database

Data-parallel analysis

In-Memory Computing Summit Europe 2018

19

Some Applications for Digital Twins

In-Memory
INn|Computing

SUMMITI56%%

A digital twin correlates incoming events with context using domain-specific algorithms to

generate alerts:

Application ___|Context ______[Events _____Jlogic _________lAlerts _____

loT devices o

Medical

monitoring

Cable TV

Ecommerce ‘g
L7 ‘

Fraud
detection ﬁﬁ

Device status & history

Patient history &
medications

Viewer preferences &
history, set-top box
status

Shopper preferences &
buying history

Customer status &
history

Device telemetry

Heart-rate, blood-
pressure, etc.

Channel change
events, telemetry

Clickstream events
from web site

Transactions

Analyze to predict

maintenance.

Evaluate measurements
over time windows with

rules engine.

Cleanse & map channel
events for reco. engine;
predict box failure.

Use ML to make product

recommendations.

Analyze patterns to
identify probable fraud.

Maintenance
requests

Alerts to patient
& physician

Viewer recom-
mendations,
repair alerts

Product list for
web site

Alerts to
customer & bank

In-Memory Computing Summit Europe 2018

20

Why Use an IMDG to Host Digital Twins? [in]Someing .

UMMITI507%

IMDG provides an excellent DT plaftorm:

* Scalable, object-oriented data storage:
e Offers a natural model for hosting digital twins.

* Cleanly separates domain logic from data-parallel
orchestration.

e

* Integrated, In-memory computing:

Stream Processing
e Automatically correlates incoming events for ’/\ /\\
analySIS' _ Source — (w — Sink
* Enables both stream and data-parallel processing.
. In-Memory .
* High performance: source | —> Data Grid — | sink
* Avoids data motion and associated network Source , | Sink
bottlenecks. L B
* Fast and scales to handle large workloads. ? *

* Integrated high availability:
* Uses data replication designed for live systems.
* Can ensure that computation is high av.

Batch Processing

In-Memory Computing Summit Europe 2018 21

Scaling Event Ingestion with Kafka

IMDG partitions digital twin objects across
servers.

Kafka offers partitions to scale out handling
of event messages.

e Partitions are distributed across brokers.
* Brokers process messages in parallel.

* IMDG can map Kafka partitions to grid
partitions:

* IMDG specifies event-mapping algorithm to
Kafka.

* IMDG listens to appropriate Kafka partitions.

* This minimizes event handling latency.
* Avoids store-and-forward within IMDG.

Kafka Brokers

E
mg)g
3

C
=

=
)

N

(

Partition 0

Partition 2

.y

\

(

Partition 3

Partition 4

Partition 5

my

J o\

N

(

Partition 6

Partition 7

Partition 8

O

mory
uting

ROPE

<
—
om
oc
®

N

IMDG

In-Memory Computing Summit Silicon Valley 2017

22

Integrating Event and Data-Parallel Processing [in]Someaing .

SUMMI T!507%

The IMDG:

e Posts incoming events to its respective digital
twin object.

Event Collection

by
VA
Ay

Digital Twin State

 Runs the twin’s event handler method with low
latency.

* Event handler manages the event collection and can
use time windows for analysis.

* Event handler uses and updates in-memory state.

Events Alerts

* Event handler can use/update off-line state.
* Event handler optionally generates alerts and
feedback to its digital twin.
* Runs data-parallel methods to analyze all 8 D
digital twins in real-time. Offline State Data-Parallel
* Results can be used for both alerting and feedback. Analysis

In-Memory Computing Summit Europe 2018 23

Example: Ecommerce Shopping Site [in]Someaing .

UMMITI507%

Tracks web shoppers and provides real-
time recommendations:

Shoppers - -

. . @ In-Memory Data Grid
* Each DT object holds clickstream of

</
-y

browsed products, preferences, and (
demographics. |

* Event handler analyzes this data and
updates recommendations.

* Periodic data-parallel, batch analytics
across all shoppers determine aggregate
trends:

* Examples include best selling products,
average basket size, etc.

* Used for analysis and real-time feedback Data-Parallel Analytics

In-Memory Computing Summit Europe 2018 24

Example: Tracking a Fleet of Vehicles [in]Someaing .

2018

* Goal: Track telemetry from a fleet of cars or trucks.

* Events indicate speed, position, and
other parameters.

* Digital twin object stores information @ === QAR 77T
about vehicle, driver, and destination.

* Event handler alerts on exceptional
conditions (speeding, lost vehicle).

In-Memory Data Grid

------------- Telemetry = = =
-~ - --Feedback== === ===

* Periodic data-parallel analytics
determines aggregate fleet
performance: Eval ¢

 Computes overall fuel efficiency, driver

_J
performance, vehicle availability, etc. M
* Can provide feedback to drivers to optimize

.)
operations.
Data-Parallel Analytics

In-Memory Computing Summit Europe 2018 25

Using Digital Twins in a Hierarchy [in]Someaing .

UMMITI507%

Tracks complex systems as hierarchy

of digital twin objects: - ~
* Leaf nodes receive telemetry from A In-Memory Data Grid
physical endpoints. / 5 ‘:
| \ —T™ |
e Higher level nodes represent Slades | ; Ta
subsystems: | i i
. ‘\) -~ . | = / \
* Receive telemetry from lower-level o)) — (%] : Blade System —
nOdeS- Generétor I\‘.T:)vlle_r (_:o_mfxin_en_ts /: Windmill
* Supply telemetry to higher-level nodes
as alerts. :
* Allow successive refinement of real- Control Panl
time telemetry into higher-level _ J

abstractions.
Example: Hierarchy of Digital Twins

for a Windmill

In-Memory Computing Summit Europe 2018 26

Detailed Example: Heart-Rate Watch Monitoring [inJéemsiing ..

SUMMITI56%%

Goal: Track heart-rate for a large population of runners.
* Heart-rate events flow from smart watches to their respective digital twin objects for analysis.

* The analysis uses wearer’s history, activity, and aggregate statistics to determine feedback and
alerts.

4)
In-Memory Data Grid Feedback

------------- = —

Results
- - Data
------------- - —_—

\ Data-Parallel
_J Analysis

Feedback

In-Memory Computing Summit Europe 2018 27

Digital Twin Object (Java) [in]éomeiing .

SUMMITI56%%

* Holds event collection and user’s context (age, medical history, current status, etc.):

public class User implements Serializable {
private int _id; -
private double height;
private double bodyWeight;
private Gender _gender;
private int _age;
private int _averageHr;
private WorkoutProgress status;
private int _sessionAverageMax;
private List<Medication> _medications;
private List<Long> _heartIncidents;
private List<HeartRate> _runningHeartRateTelemetry; Event collection
private long _alertTime;
private boolean _alerted;

-

g

In-Memory Computing Summit Europe 2018 28

Events & Alerts

* Event holds periodic telemetry sent from watch to IMDG:

public class HeartRateEvent {
private int _userld;
private int _heartRate;
private long _timestamp;
private WorkoutType _workoutType;
private WorkoutProgress _workoutProgress;
private Event _event;

-

 Alert holds data to be sent back to wearer and/or to medical personnel:

public class HeartRateAlert {
private int _userld;
private String _alertType;
private String _params;

-

In-Memory Computing Summit Europe 2018

Setting Up a ReactiveX Pipeline on the IMDG [in]éomeiing .

SUMMITI56%%

* Define a ReactiveX observer that runs on every server in the IMDG:

public class HeartRateObserver implements Observer<Event>, Serializable {
@Override public void onNext(Event event) {
HeartRateEvent hre = HeartRateEvent.fromBytes(event.getPayload());

hre.setEvent(event);
Call application

User.processRunningEvent(hre);} ...}
* Create an invocation grid that Initializes the ReactiveX observer at startup:

Pipeline pipeline = new Pipeline(“userCache”, “userGrid”);

GridAction action = pipeline.createRemoteObserverAction("userObserver",
new HeartRateObserver());

InvocationGrid grid = new InvocationGridBuilder(“userGrid”)

.addJar("./bin/appcode.jar")
.addStartupAction(action)
.load();

In-Memory Computing Summit Europe 2018 30

-Memory

. In .
Event Handler and Event Posting [in]Someaing .

18

Nm
oC

* Posting an event to the ReactiveX observer :
* The key determines which server receives the event for posting.

pipeline.postEvent(makeKey(Userld), "heartRateEvent"”, HeartRateEvent.toBytes(
new HeartRateEvent(last, System.nanoTime(),
WorkoutType.Running, WorkoutProgress)));

* Handling an event posted to the ReactiveX observer on DT twin’s server :

private static void processRunningEvent(HeartRateEvent hre) {

CachedObjectId id = hre.getId();
User u = (User)cache.retrieve(id, false);

Retrieve DT object

executeRunningWorkoutAnalytics(hre, u); Analyze event

cache.update(id, u);} Update DT object

In-Memory Computing Summit Europe 2018 31

Event Analysis [in] &t

* Handles an event for an active user doing a running workout:

long start = twolWeeksAgo();
SessionWindowCollection<>(u.getRunningHeartRateTelemetry(),

private static void executeRunningWorkoutAnalytics(HeartRateEvent hre, User u) {
long sessionTimeout = threeHours();
SessionWindowCollection<HeartRate> swc = new
heartRate -> heartRate.getTimestamp(), start, sessionTimeout);
swc.add(new HeartRate(hre.getHeartRate(), hre.getTis® :

Add event

int total = 9; int windowCount = 0;
for(TimeWindow<HeartRate> window : swc) {
int avg = 0;
for(HeartRate hr : window) {avg += hr.getHeartRate();}

total += (avg/window.size());

Analyze event history

windowCount++; }
u.setAverageHr(total/windowCount);
u.analyzeAndCheckForAlert(hre);}

In-Memory Computing Summit Europe 2018

Analysis Techniques Enabled by Digital Twin [in]éomeiing .

SUN\MIT\zma

Enable detailed heart-rate monitoring for a high intensity exercise program:

* Example of data to be tracked:

* Exercise specifics: type of exercise, exercise-specific parameters (distance,
strides, altitude change, etc.)

 Participant background/history: age, height, weight history, heart-related
medical conditions and medications, injuries, previous medical events

* Exercise tracking: session history, average # sessions per week, average and
peak heart rates, frequency of exercise types

» Aggregate statistics: average/max/min exercise tracking statistics for all participants

* Example of logic to be performed:
* Notify participant if session history across time windows indicates need to change mix.
* Notify participant if heart rate trends deviate significantly from aggregate statistics.

 Alert participant/medical personnel if heart rate analysis across time windows indicates an
imminent threat to health.

* Report aggregate statistics to analysts and/or users.

In-Memory Computing Summit Europe 2018 33

Data Parallel Analysis Across all Digital Twins [in]Someaing .

* Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

c In-Memory Data Grid .
* Results can be reported to @
----- >
analysts and updated every N B4 T -@—
few seconds. 4 = (Q)
------------- >@
.

e Results can be used as feedback

to event analysis in digital S - f?

twin objects and/or reported Nt O s ’®——’
tousers. TR L RN | = -@)

Data-Parallel
Analysis

Feedback

In-Memory Computing Summit Europe 2018

34

Computing Aggregate Data [In]&ameuing

SUMMITI561"¢

* Performs a data-parallel computation using the IMDG’s Eval and Merge methods:

public class AggregateStatsInvokable implements Invokable<User, Integer,
AggregateStats> {
@Override

public AggregateStats eval(User u, Integer numUsers) {

userStats.merge(u);
return userStats ;

}

mergedStats.merge(u);
return mergedStats;

Eval method
AggregateStats userStats = new AggregateStats(numUsers);

@Override
public AggregateStats merge(AggregateStats mergedStats, Binary merge method
AggregateStats u) {

In-Memory Computing Summit Europe 2018

35

Computing Aggregate Data (2) [Iin]Somping

 Computes running average of heart-rate by categories:

public void merge(AggregateStats user) {
numEvents += user.getNumEvents();
totalHeartRatel8to34 += user.getTotalHeartRatel8to34();
totalHeartRate35to050 += user.getTotalHeartRate35to50();
totalHeartRateOver50 += user.getTotalHeartRateOver50();
count18to34 += user.getCountl8to34();

count35to50 += user.getCount35to50();
countOver50 += user.getCountOvers50();

totalHeartRateBmiUnderWeight += user.getTotalHeartRateBmiUnderWeight();
totalHeartRateBmiNormalWeight += user.getTotalHeartRateBmiNormalWeight();
totalHeartRateBmiOverweight += user.getTotalHeartRateBmiOverweight();
countUnderweight += user.getCountUnderweight();

countNormalWeight += user.getCountNormalWeight();

countOverWeight += user.getCountOverWeight();

In-Memory Computing Summit Europe 2018

Running the Data-Parallel Computation [in]Someaing .

SUMMITI56%%

* Uses a single method to run a data-parallel computation and return results.

* Publishes merged results to an IMDG object for access by user objects and/or analysts.

public void run() {
NamedCache usersCache = CacheFactory.getCache(“userCache”);
NamedCache statsCache = CacheFactory.getCache(“statsCache”);
AggregateStats stats;

Invoke data-parallel op
usersCache.invoke(AggregateStatsInvokable.class, null, numUsers,

InvokeResult<AggregateStats> result =
TimeSpan.fromMilliseconds(10000));

stats = result.getResult(); :
statsCache.put(“globalStats”, stats); Store result in IMDG

In-Memory Computing Summit Europe 2018 37

. In-Memory
Data-Parallel Execution Steps [in]Someaing .

* Eval phase: each server queries local * Merge phase: all servers perform binary,
objects and runs eval and merge distributed merge to create final result:
methods: * Merge runs in parallel to minimize

* Accessing local objects avoids data motion. completion time.
« Completes with one result object per server. * Returns final result object to client.

@ e |

X 7

' 4))

W,

&) ' & |\

CORE CORE
e f i

=
\H f — f CORE \ Parallel Method

Parallel Method
Execution Engine

Parallel Method Parallel Method

Execution Engine

Merged Results

=

[

S Execution Engine Execution Engine

[

2 O 4 - 4 /
Analyze] Parallel Method CORE CORE
{cupdate and —* Query Engine a Execution Engine \ ’ ['

@

ssssssssssss

g

Parallel Method
Execution Engine

Query Engine

sy|nsay pabiapy
Merged Results

In-Memory Object Store

& Grid Service

s)|nsay pabispy

» Query Engine

?
) O
CERACY

In-Memory Object Store

X Grid Service J4

In-Memory Computing Summit Europe 2018 38

. In-Memory
Predictable, Scalable Performance [in]Someaing .

2018

* Digital twin model enables the IMDG to scale both event-handling and integrated

data-parallel analysis.
* Correlating events to digital twin objects creates an automatic basis for performance scaling:

* For event analysis
* For data-parallel analysis

* It enables access to each event’s context without requiring a network access.
* It also co-locates and encapsulates application-specific code using 0-o techniques.

Data Sources Events Digital Twins Data-Parallel
Logic State AnaIYSiS

— o o o Event 3 Event 2 Event 1 — /—D-'-'/— :\
Nemsmomemememas/

Feedback
—P e o o Event 3 Event 2 Event 1 — /-».../_

Results
Data
@ — o o o Event 3 Event 2 Event 1 — /_>"'/_ ‘ ‘\/I

®|®
¢

Feedback
In-Memory Computing Summit Europe 2018 39

. In-Memory
Avoids Network Bottlenecks [in]Someaing .

 Digital twin model avoids network bottlenecks associated with using an IMDG as a

networked cache in a stream-processing pipeline.
* External data storage requires network access to obtain an event’s context.

* Network bottleneck prevents scalable throughput.

Stream Pi p E|I ne PMI vs. Rand;::;;:ss Throughpt{.t Comparison

Source — Data — | Operation | —p» Data e - -
Stream P Stream —_—505S PM| ——Random Accessl
-
=
§
¢ ¢ & m 1
[]
fa
00
(=9
Storage =
=
-y
N [»]
Distributed 1<
Cache
Datab 0 ; - r : ; ,
atabase Number of Nodes 4 B] o0]

Mumber of Objscte 52 1024 hlx] 4G T2 584 L]

In-Memory Computing Summit Europe 2018 40

\Nra p_ U p mgarMnep'I}tOi:‘yg EUROPE

SUMMI Tlz2o018

Digital Twins: The Next Generation in Stateful Stream-Processing

* Challenge: Current techniques for stateful stream-processing:
* Lack a coherent software architecture for managing context.

e Can suffer from performance issues due to network bottlenecks.

* The digital twin model:

» Offers a flexible, powerful, scalable architecture for stateful stream-processing:
* Associates events with context about their physical sources for deeper introspection.

* Enables flexible, object-oriented encapsulation of analysis algorithms.

* Provides a basis for aggregate analysis and feedback.

* Scalable, data-parallel computing with an IMDG:
* Automatically correlates incoming events and processes them in parallel.

* Implements integrated (real-time), aggregate analysis for immediate feedback.

In-Memory Computing for Operational Intelligence

www.scaleoutsoftware.com

