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About the Speaker [in]Someaing .

UMMITI507%

* Dr. William Bain, Founder & CEO of ScaleOut Software:
* Email: wbain@scaleoutsoftware.com
* Ph.D. in Electrical Engineering (Rice University, 1978)
» Career focused on parallel computing — Bell Labs, Intel, Microsoft

e 3 prior start-ups, last acquired by Microsoft and product now ships as
Network Load Balancing in Windows Server

e ScaleOut Software develops and markets In-Memory Data Grids,
software for:

* Scaling application performance with

in-memory data storage @ ScaleOut Software

* Analyzing live data in real time with
in-memory computing

* Thirteen+ years in the market; 450+ customers, 12,000+ servers
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How In-Memory Computing Creates the Next Generation in
Stream-Processing

* Goals and challenges for stream-processing

* Adding context: stateful stream-processing

* Overview of in-memory data grids (IMDGs)

e Digital twin model for stream-processing

 Why use an IMDG: integrated event processing and data-parallel analysis
* Example use cases

* Detailed code sample: runners with smart watches

e Performance benefits
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Goals for Stream-Processing [in]Someaing .

* Goals:
* Process incoming data streams from many (1000s) of sources.
* Analyze events for patterns of interest.
* Provide timely (real-time) feedback and alerts.
* Provide data-parallel analytics for aggregate

statistics and feedback.
 Many applications: T T
* Internet of Things (loT)

Medical monitoring
Logistics
Financial trading systems

Ecommerce recommendations

Event Sources
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. . In-Memory
Example: Ecommerce Recommendations [in]Someaing .

1000s of online shoppers:

* Each shopper generates a clickstream of a
products searched. e =
e Stream-processing system must: ()
* Correlate clicks for each shopper. L e diste ReakTime (S5
. . . . . . Recommendations @
* Maintain a history of clicks during a shopping

session. Shopper

. . Clickstream
* Analyze clicks to create new recommendations
within 100 msec.

* Analysis must:
* Take into account the shopper’s preferences and
demographics.

* Use aggregate feedback on collaborative
shopping behavior.
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Providing Recommendations in Real Time

lins
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omputing
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* Requires scalable stream-processing to analyze each click and respond in <100ms:
* Accept input with each event on shopper’s preferences.
* Provide aggregate feedback on best-selling products.
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Providing Aggregate Metrics
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Challenges for Stream-Processing Architectures  [in]Smeuing ..

SUMMITI56%%

* Basic stream-processing architecture:

Data Sources Events
N Stream Processing Pipeline
Source A| —~ o o o Event 3 Event 2 Event 1
\/
R
SourceB| —= o o o Event 3 Event 2 Event 1 Source — = — | Data Stream | — — Sink
\/
/\
SourceC| —— o o @ Event 3 Event 2 Event 1
\/

* Challenges:

* How efficiently correlate events from each data source?
How combine events with relevant state information to create the necessary context for analysis?

How embed application-specific analysis algorithms in the pipeline?

How generate feedback/alerts with low latency?
How perform data-parallel analytics to determine aggregate trends?
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Adding Context to Stream-Processing [in]éomeiing .

SUMMI T!507%

 Stateful stream-processing platforms add “unmanaged” data storage to the pipeline:
* Pipeline stages perform transformations in a sequence of stages from data sources to sinks.

» Data storage (distributed cache, database) is accessed from the pipeline by application code in an
unspecified manner.

e E : E [
xamples: Apama (CEP), Apache Flink, Storm Stream Pipeline

. Data . Data -
[ ) PrObIemS. Source — — Operation — — Sink

* There is no software architecture ? ¢
for managing state information.
e This adds complexity to the Storage

application.
Cach
* Creates a network bottleneck. ae

e Does not address need for
data-parallel analytics.

Database
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. . . In-Memory
Lambda Architecture: Batch Parallel Analytics [in]Someaing .

2018

* Lambda architecture separates stream-processing (“speed layer”) from data-parallel
analytics (“batch layer”).

* Creates queryable state, but:

* Does not enhance context
for stateful stream processing.

* Does not perform data-parallel analytics
online for immediate feedback.

* Does not lead to a “Hybrid Transactional
and Analytics Processing” (HTAP)
architecture.

Speed (Real-Time)
Processing

s e
et

B Responses >
Cluster -

Batch Processing

https://commons.wikimedia.org/w/index.php?curid=34963987

How combine stream-processing
with state to simplify design,
maximize performance, and
enable fast data-parallel analytics?
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In-Memory Data Grid (IMDG) [in]éomeiing .

SUMMI TI505%

IMDG provides a powerful platform for stateful stream-processing.
What is an IMDG? Logical view

* IMDG stores live, object-oriented data:

» Uses a key/value storage model for large object
collections.

* Maps objects to a cluster of commodity servers with
location transparency.

* Has predictably fast (<1 msec.) data access and updates.
* Designed for transparent scaling and high availability

* IMDG integrates in-memory computing with
data storage:
* Uses object-oriented execution model.
 Leverages the cluster’s computing power. Physical view

 Computes where the data lives to avoid network bottlenecks. IMDG Storage Model
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How an IMDG Can Integrate Computation [in]Someaing .

* Each grid host runs a worker
process which executes
application-defined methods
on stored objects.

* The set of worker processes is
called an invocation grid (1G).

* |G usually runs language-
specific runtimes (JVM, .NET).

* IMDG can ship code to the IG

workers.

* Key advantages for IGs: e |BEsER 000 0 gmwes 0000 EBE

* Follows object-oriented model. o RIS SRR RN BRRR O

* Avoids network bottlenecks by f:f:f:f:f:\;:;:;:;:;:;:-:-:;:;:;:/fffffffffffffffffffff:;:;:;:;:;:-:-:;:;:;fffffff:f:fffffffffff:\;:;:;:;:-:;:;:;:-:;:;ffffffffff

moving computing to the data. - Fost o Hest2o o Host3

* Leverages IMDG's cores & " InMemoryDataGrd
servers.
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IMDG Runs Event Handlers for Stream-Processing

Event handlers run independently for

each incoming event:

* IMDG directs event to a specific object

using ReactiveX for low latency.

* IMDG executes multiple event

handlers in parallel for high

throughput.
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IMDG Executes Data-Parallel Computations [in]Someaing .

Method execution implements a
batch job on an object collection:

c o f o - D
e Client runs a single method on all LS e Lo
biects i llecti IG IG IG
ODJECLS In a cofliection. Worker Worker Worker
e Execution runs in parallel across the
orid.
e Results are merged and returned to m * m * m *
the client. ‘ N (O % & %
. Invoke parallel method Grid Grid Grid
Client Service Service Service
Return merged results s ~N - N s ~
\ X e
Local Local Local
\\ Memory . A Memory ) k\ Memory J
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A Basic Data-Parallel Execution Model [in]Someaing .

A fundamental model from
parallel supercomputing: .

* Run one method (“eval”) | | | | | | - .
in parallel across many (e | [om | [om | [ow | [ om i | [om |
data objects. | | | ! : } } v

e Optionally merge the

results.
e Binary combining is a N S N S
special case, but...

* ItrunsinlogN time to — .

enable scalable speedup
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. . In-Memory
MapReduce Builds on This Model [in]Someaing .
* Implements “group-by”
computations.
* Example: “Determine average
RPM for all windmills by region source dataset
(NE, NW, SE, SW).” v Y Y v | v Y v
| (e ) (o) (o] [ow ) (o) [ow | (o) [0
* Runs in two data-parallel N0 OO 4\ AN
phases (map, reduce):
* Map phase repartitions and < o o >
optionally combines source partitions\,}\ I //$/
data.
* Reduce phase analyzes each | | |

data partition in parallel.

e Returns results for each
partition.

result dataset
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Distributed ForEach: Another Data-Parallel Model [in]éemsiing ...

Host O Host 1

localinit localinit : localinit localinit
* Task 0 Task 1 T * Task 0 Task 1 *
result body — body It g It body — body result
body — body body — body

body

I B
IR
R N
IR
Q»_/T./;’\_/T

body

0
L_iource Collection‘_J Liource Collection )
localFinally localFinally
resu
g\oba\ merge
\
localFinally

| ——

i

result
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Reduced GC Time with Distributed ForEach In|€omeuing

SUMMITI561"¢

PMI Distributed ForEach
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Stream-Processing with the Digital Twin Model

* Created by Michael Grieves; popularized by Gartner

* Represents each data source with an IMDG object
that holds:

* An event collection

e State information about the data source

Logic for analyzing events, updating state, and
generating alerts

* Benefits:

Offers a structured approach to stateful stream-processing.

Automatically correlates incoming events by data source.
Integrates all relevant context (events & state).

Enables easy deployment of application-specific logic (e.g.,
ML, rules engine, etc.) for analysis and alerting.

Provides domain for aggregate analysis and feedback.

In-Memory
In Compu"ng EUROPE

SUMMI T!507%

}

J

V=74

e

Ay

Digital Twin

State

-

In- M7(ry Data Grid

Gio)
cm ®

o\

Database

Data-parallel analysis
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Some Applications for Digital Twins

In-Memory
INn|Computing

SUMMITI56%%

A digital twin correlates incoming events with context using domain-specific algorithms to

generate alerts:

Application ___|Context ______[Events _____Jlogic _________lAlerts _____

loT devices o

Medical

monitoring

Cable TV

Ecommerce ‘g
L7 ‘

Fraud
detection ﬁﬁ

Device status & history

Patient history &
medications

Viewer preferences &
history, set-top box
status

Shopper preferences &
buying history

Customer status &
history

Device telemetry

Heart-rate, blood-
pressure, etc.

Channel change
events, telemetry

Clickstream events
from web site

Transactions

Analyze to predict

maintenance.

Evaluate measurements
over time windows with

rules engine.

Cleanse & map channel
events for reco. engine;
predict box failure.

Use ML to make product

recommendations.

Analyze patterns to
identify probable fraud.

Maintenance
requests

Alerts to patient
& physician

Viewer recom-
mendations,
repair alerts

Product list for
web site

Alerts to
customer & bank

In-Memory Computing Summit Europe 2018
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Why Use an IMDG to Host Digital Twins? [in]Someing .

UMMITI507%

IMDG provides an excellent DT plaftorm:

* Scalable, object-oriented data storage:
e Offers a natural model for hosting digital twins.

* Cleanly separates domain logic from data-parallel
orchestration.

e

* Integrated, In-memory computing:

Stream Processing
e Automatically correlates incoming events for ’/\ /\\
analySIS' _ Source — ( w — Sink
* Enables both stream and data-parallel processing.
. In-Memory .
* High performance: source | —> Data Grid — | sink
* Avoids data motion and associated network Source , | Sink
bottlenecks. L B
* Fast and scales to handle large workloads. ? *

* Integrated high availability:
* Uses data replication designed for live systems.
* Can ensure that computation is high av.

Batch Processing
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Scaling Event Ingestion with Kafka

IMDG partitions digital twin objects across
servers.

Kafka offers partitions to scale out handling
of event messages.

e Partitions are distributed across brokers.
* Brokers process messages in parallel.

* IMDG can map Kafka partitions to grid
partitions:

* IMDG specifies event-mapping algorithm to
Kafka.

* IMDG listens to appropriate Kafka partitions.

* This minimizes event handling latency.
* Avoids store-and-forward within IMDG.

Kafka Brokers
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Integrating Event and Data-Parallel Processing [in]Someaing .

SUMMI T!507%

The IMDG:

e Posts incoming events to its respective digital
twin object.

Event Collection

by
VA
Ay

Digital Twin State

 Runs the twin’s event handler method with low
latency.

* Event handler manages the event collection and can
use time windows for analysis.

* Event handler uses and updates in-memory state.

Events Alerts

* Event handler can use/update off-line state.
* Event handler optionally generates alerts and
feedback to its digital twin.
* Runs data-parallel methods to analyze all 8 D
digital twins in real-time. Offline State Data-Parallel
* Results can be used for both alerting and feedback. Analysis
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Example: Ecommerce Shopping Site [in]Someaing .

UMMITI507%

Tracks web shoppers and provides real-
time recommendations:

Shoppers - -

. . @ In-Memory Data Grid
* Each DT object holds clickstream of

</
-y

browsed products, preferences, and (
demographics. |

* Event handler analyzes this data and
updates recommendations.

* Periodic data-parallel, batch analytics
across all shoppers determine aggregate
trends:

* Examples include best selling products,
average basket size, etc.

* Used for analysis and real-time feedback Data-Parallel Analytics
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Example: Tracking a Fleet of Vehicles [in]Someaing .

2018

* Goal: Track telemetry from a fleet of cars or trucks.

* Events indicate speed, position, and
other parameters.

* Digital twin object stores information @ === QAR 77T
about vehicle, driver, and destination.

* Event handler alerts on exceptional
conditions (speeding, lost vehicle).

In-Memory Data Grid

------------- Telemetry = = =
-~ - --Feedback== === ===

* Periodic data-parallel analytics
determines aggregate fleet
performance: Eval ¢

 Computes overall fuel efficiency, driver

_J
performance, vehicle availability, etc. M
* Can provide feedback to drivers to optimize

. )
operations.
Data-Parallel Analytics
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Using Digital Twins in a Hierarchy [in]Someaing .

UMMITI507%

Tracks complex systems as hierarchy

of digital twin objects: - ~
* Leaf nodes receive telemetry from A In-Memory Data Grid
physical endpoints. / 5 ‘:
| \ —T™ |
e Higher level nodes represent Slades | ; Ta
subsystems: | i i
. ‘\) -~ . | = / \
* Receive telemetry from lower-level o)) — (%] : Blade System —
nOdeS- Generétor I\‘.T:)vlle_r (_:o_mfxin_en_ts /: Windmill
* Supply telemetry to higher-level nodes
as alerts. :
* Allow successive refinement of real- Control Panl
time telemetry into higher-level \_ J

abstractions.
Example: Hierarchy of Digital Twins

for a Windmill
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Detailed Example: Heart-Rate Watch Monitoring  [inJéemsiing ..

SUMMITI56%%

Goal: Track heart-rate for a large population of runners.
* Heart-rate events flow from smart watches to their respective digital twin objects for analysis.

* The analysis uses wearer’s history, activity, and aggregate statistics to determine feedback and
alerts.

4 )
In-Memory Data Grid Feedback

------------- = —

Results
- - Data
------------- - —_—

\ Data-Parallel
_J Analysis

Feedback
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Digital Twin Object (Java) [in]éomeiing .

SUMMITI56%%

* Holds event collection and user’s context (age, medical history, current status, etc.):

public class User implements Serializable {
private int _id; -
private double height;
private double bodyWeight;
private Gender _gender;
private int _age;
private int _averageHr;
private WorkoutProgress status;
private int _sessionAverageMax;
private List<Medication> _medications;
private List<Long> _heartIncidents;
private List<HeartRate> _runningHeartRateTelemetry; Event collection
private long _alertTime;
private boolean _alerted;

-

g
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Events & Alerts

* Event holds periodic telemetry sent from watch to IMDG:

public class HeartRateEvent {
private int _userld;
private int _heartRate;
private long _timestamp;
private WorkoutType _workoutType;
private WorkoutProgress _workoutProgress;
private Event _event;

-

 Alert holds data to be sent back to wearer and/or to medical personnel:

public class HeartRateAlert {
private int _userld;
private String _alertType;
private String _params;

-

In-Memory Computing Summit Europe 2018



Setting Up a ReactiveX Pipeline on the IMDG [in]éomeiing .

SUMMITI56%%

* Define a ReactiveX observer that runs on every server in the IMDG:

public class HeartRateObserver implements Observer<Event>, Serializable {
@Override public void onNext(Event event) {
HeartRateEvent hre = HeartRateEvent.fromBytes(event.getPayload());

hre.setEvent(event);
Call application

User.processRunningEvent(hre);} ...}
* Create an invocation grid that Initializes the ReactiveX observer at startup:

Pipeline pipeline = new Pipeline(“userCache”, “userGrid”);

GridAction action = pipeline.createRemoteObserverAction("userObserver",
new HeartRateObserver());

InvocationGrid grid = new InvocationGridBuilder(“userGrid”)

.addJar("./bin/appcode.jar")
.addStartupAction(action)
.load();
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-Memory

. In .
Event Handler and Event Posting [in]Someaing .

18

Nm
oC

* Posting an event to the ReactiveX observer :
* The key determines which server receives the event for posting.

pipeline.postEvent(makeKey(Userld), "heartRateEvent"”, HeartRateEvent.toBytes(
new HeartRateEvent(last, System.nanoTime(),
WorkoutType.Running, WorkoutProgress)));

* Handling an event posted to the ReactiveX observer on DT twin’s server :

private static void processRunningEvent(HeartRateEvent hre) {

CachedObjectId id = hre.getId();
User u = (User)cache.retrieve(id, false);

Retrieve DT object

executeRunningWorkoutAnalytics(hre, u); Analyze event

cache.update(id, u);} Update DT object
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Event Analysis [in] &t

* Handles an event for an active user doing a running workout:

long start = twolWeeksAgo();
SessionWindowCollection<>(u.getRunningHeartRateTelemetry(),

private static void executeRunningWorkoutAnalytics(HeartRateEvent hre, User u) {
long sessionTimeout = threeHours();
SessionWindowCollection<HeartRate> swc = new
heartRate -> heartRate.getTimestamp(), start, sessionTimeout);
swc.add(new HeartRate(hre.getHeartRate(), hre.getTis® :

Add event

int total = 9; int windowCount = 0;
for(TimeWindow<HeartRate> window : swc) {
int avg = 0;
for(HeartRate hr : window) {avg += hr.getHeartRate();}

total += (avg/window.size());

Analyze event history

windowCount++; }
u.setAverageHr(total/windowCount);
u.analyzeAndCheckForAlert(hre);}

In-Memory Computing Summit Europe 2018



Analysis Techniques Enabled by Digital Twin [in]éomeiing .

SUN\MIT\zma

Enable detailed heart-rate monitoring for a high intensity exercise program:

* Example of data to be tracked:

* Exercise specifics: type of exercise, exercise-specific parameters (distance,
strides, altitude change, etc.)

 Participant background/history: age, height, weight history, heart-related
medical conditions and medications, injuries, previous medical events

* Exercise tracking: session history, average # sessions per week, average and
peak heart rates, frequency of exercise types

» Aggregate statistics: average/max/min exercise tracking statistics for all participants

* Example of logic to be performed:
* Notify participant if session history across time windows indicates need to change mix.
* Notify participant if heart rate trends deviate significantly from aggregate statistics.

 Alert participant/medical personnel if heart rate analysis across time windows indicates an
imminent threat to health.

* Report aggregate statistics to analysts and/or users.
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Data Parallel Analysis Across all Digital Twins [in]Someaing .

* Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

c In-Memory Data Grid .
* Results can be reported to @
----- >
analysts and updated every N B4 T -@—
few seconds. 4 = (Q)
------------- >@
.

e Results can be used as feedback

to event analysis in digital S - f?

twin objects and/or reported Nt O s ’®——’
tousers. TR L RN | = -@)

Data-Parallel
Analysis

Feedback
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Computing Aggregate Data [In]&ameuing

SUMMITI561"¢

* Performs a data-parallel computation using the IMDG’s Eval and Merge methods:

public class AggregateStatsInvokable implements Invokable<User, Integer,
AggregateStats> {
@Override

public AggregateStats eval(User u, Integer numUsers) {

userStats.merge(u);
return userStats ;

}

mergedStats.merge(u);
return mergedStats;

Eval method
AggregateStats userStats = new AggregateStats(numUsers);

@Override
public AggregateStats merge(AggregateStats mergedStats, Binary merge method
AggregateStats u) {

In-Memory Computing Summit Europe 2018
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Computing Aggregate Data (2) [Iin]Somping

 Computes running average of heart-rate by categories:

public void merge(AggregateStats user) {
numEvents += user.getNumEvents();
totalHeartRatel8to34 += user.getTotalHeartRatel8to34();
totalHeartRate35to050 += user.getTotalHeartRate35to50();
totalHeartRateOver50 += user.getTotalHeartRateOver50();
count18to34 += user.getCountl8to34();

count35to50 += user.getCount35to50();
countOver50 += user.getCountOvers50();

totalHeartRateBmiUnderWeight += user.getTotalHeartRateBmiUnderWeight();
totalHeartRateBmiNormalWeight += user.getTotalHeartRateBmiNormalWeight();
totalHeartRateBmiOverweight += user.getTotalHeartRateBmiOverweight();
countUnderweight += user.getCountUnderweight();

countNormalWeight += user.getCountNormalWeight();

countOverWeight += user.getCountOverWeight();
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Running the Data-Parallel Computation [in]Someaing .

SUMMITI56%%

* Uses a single method to run a data-parallel computation and return results.

* Publishes merged results to an IMDG object for access by user objects and/or analysts.

public void run() {
NamedCache usersCache = CacheFactory.getCache(“userCache”);
NamedCache statsCache = CacheFactory.getCache(“statsCache”);
AggregateStats stats;

Invoke data-parallel op
usersCache.invoke(AggregateStatsInvokable.class, null, numUsers,

InvokeResult<AggregateStats> result =
TimeSpan.fromMilliseconds(10000));

stats = result.getResult(); :
statsCache.put(“globalStats”, stats); Store result in IMDG
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. In-Memory
Data-Parallel Execution Steps [in]Someaing .

* Eval phase: each server queries local * Merge phase: all servers perform binary,
objects and runs eval and merge distributed merge to create final result:
methods: * Merge runs in parallel to minimize

* Accessing local objects avoids data motion. completion time.
« Completes with one result object per server. * Returns final result object to client.
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. In-Memory
Predictable, Scalable Performance [in]Someaing .

2018

* Digital twin model enables the IMDG to scale both event-handling and integrated

data-parallel analysis.
* Correlating events to digital twin objects creates an automatic basis for performance scaling:

* For event analysis
* For data-parallel analysis

* It enables access to each event’s context without requiring a network access.
* It also co-locates and encapsulates application-specific code using 0-o techniques.
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. In-Memory
Avoids Network Bottlenecks [in]Someaing .

 Digital twin model avoids network bottlenecks associated with using an IMDG as a

networked cache in a stream-processing pipeline.
* External data storage requires network access to obtain an event’s context.

* Network bottleneck prevents scalable throughput.

Stream Pi p E|I ne PMI vs. Rand;::;;:ss Throughpt{.t Comparison

Source — Data — | Operation | —p» Data e - -
Stream P Stream —_—505S PM| ——Random Accessl
-
=
§
¢ ¢ & m 1
[ ]
fa
00
(=9
Storage =
=
-y
N [»]
Distributed 1<
Cache
Datab 0 ; - r : ; ,
atabase Number of Nodes 4 B ] o0 ]

Mumber of Objscte 52 1024 hlx ] 4G T2 584 L]

In-Memory Computing Summit Europe 2018 40



\Nra p_ U p mgarMnep'I}tOi:‘yg EUROPE

SUMMI Tlz2o018

Digital Twins: The Next Generation in Stateful Stream-Processing

* Challenge: Current techniques for stateful stream-processing:
* Lack a coherent software architecture for managing context.

e Can suffer from performance issues due to network bottlenecks.

* The digital twin model:

» Offers a flexible, powerful, scalable architecture for stateful stream-processing:
* Associates events with context about their physical sources for deeper introspection.

* Enables flexible, object-oriented encapsulation of analysis algorithms.

* Provides a basis for aggregate analysis and feedback.

* Scalable, data-parallel computing with an IMDG:
* Automatically correlates incoming events and processes them in parallel.

* Implements integrated (real-time), aggregate analysis for immediate feedback.
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