In-Memory
In gcmpunng EARRO P E

UMM T 5058

In-Memory Computing Brings Operational Intelligence
to Business Challenges

About the Speaker [in]Someaing .

UMMITI507%

* Dr. William Bain, Founder & CEO of ScaleOut Software:
* Email: wbain@scaleoutsoftware.com
* Ph.D. in Electrical Engineering (Rice University, 1978)
» Career focused on parallel computing — Bell Labs, Intel, Microsoft

e 3 prior start-ups, last acquired by Microsoft and product now ships as
Network Load Balancing in Windows Server

e ScaleOut Software develops and markets In-Memory Data Grids,
software for:

* Scaling application performance with

in-memory data storage @ ScaleOut Software

* Analyzing live data in real time with
in-memory computing

* Thirteen+ years in the market; 450+ customers, 12,000+ servers

In-Memory Computing Summit Europe 2018 2

Agenda [in]éomeiing .

SUMMI Tlz2o018

The evolution of in-memory computing for operational intelligence:
* The foundation: in-memory data grids (IMDGs)
* The challenges: using IMDGs for caching with parallel query

* Data-parallel computing: delivering operational intelligence
 Examples in financial services

* The next step: data-parallel computing with method invocations
* Examples in financial services and cable media

* Evolution into stream-processing: the digital twin model
* Examples in ecommerce, logistics, 10T, medical device tracking, and more

* Combining stream-processing and data-parallel computing with an IMDG

In-Memory Data Grid (IMDG) [in]éomeiing .

SUMMITI56%%

IMDGs provide fast, scalable, distributed in-memory data storage.

What is an IMDG? Logical view
. . . I«
* IMDG stores live, object-oriented data: O@® 0
» Uses a key/value storage model for large object Q @3
collections. @ Obj::t cgi-ction
Basic “CRUD” APIs: -
key « Create(key, obj, tout)
Object * Read (key)
* Update (key, obj)
* Delete (key)

* Maps objects to a cluster of commodity servers with
location transparency.

* Has predictably fast (<1 msec.) data access and updates.

Physical view

* Designed for transparent scaling and high availability IMDG

In-Memory Computing Summit Europe 2018 4

Wide Range of Applications for IMDGs [in]Someaing .

18

IMDGs are typically used as a

distributed cache. * Online banking < Brokerage
Financial & * Loan apps e« Trading e Data services
Insurance * Portfolio analysis < Risk management

« Position updating

rE tertain. & * Shopping carts e User state
ntertain.
Comm Ecommerce * Reward programs e Instant offers
Gov't & Ed * Product catalogs e Sale spikes
Tvl & Trans Finance & * Patient records e« SaaS e User preferences
Ins. Online Services * Service processing « Online education

* Internet provisioning e« Legal analysis

Online
Services

_ * Online game state e« Streaming media
Ecommerce Entertainment &

Communication * Online bill pay e Services catalog

* Gambling analysis

Travel & * Ticketing system « Reservation system
Transportation * Reservation analysis

In-Memory Computing Summit Europe 2018 5

. In-Memor
Using IMDG as a Cache: Parallel Query [in]Someing .

* Users often have a database mindset and rely on query.
* Query retrieves a set of objects with selected
properties and/or tags.
* Uses all grid servers to access queried data.
* Challenges:

e Cost = O(N) for N servers (vs. O(1) for CRUD)
» Can create excessive network traffic

* |Intermediate solution: filter methods:

Queries the IMDG
in parallel.

* Run Boolean method on objects to refine search. Merges the keys
* Example (CH): into a list for the
(select stocks where region = NW) client. "
.Filter(EvalPriceChanges()); %fg‘
Key D

» Reduces number of objects returned to client.
* Provides a bridge to data-parallel computing.

In-Memory Computing Summit Europe 2018 6

The Next Step: Operational Intelligence (Ol) [in]éomeiing .

SUMMITI56%%

Goal: Provide immediate (sub-second) feedback to a system handling live data.
* An IMDG hosts live data and can introspect on that data

in real time.
* This delivers much greater value that just using y
. ‘\/
the grid as a cache. = @
. . . . Market Data
* A few example use cases requiring immediate Map/Reduce Analytics Engine Alerts
feedback within a live system: bbbt Fast, Memory Based Storage)
, , . News e 1 s) 8
 Ecommerce: personalized, real-time recommendations it
. . . . 4. In-Memory Compute Engine =
* Healthcare: patient monitoring, predictive treatment a Trading
* Equity trading: minimize risk during a trading day ;(')f:?ff;?i'gls

* Reservations systems: identify issues, reroute, etc.
* Credit cards & wire transfers: detect fraud in real time

* loT, smart grids: predictive analytics & optimization

In-Memory Computing Summit Europe 2018 7

Operational vs Business Intelligence

Operational Intelligence _

Real-time

Live data sets
Gigabytes to terabytes
In-memory storage
Sub-seconds to seconds

Best uses:
* Tracking live data

* Immediately identifying
trends and capturing
opportunities

* Providing immediate feedback

Big Data Analytics

| Ol
\ Live Systems

Bl
Data Center

In-Memory
In Compu"ng EUROPE

SUMMI T!507%

Business Intelligence
Batch

Static data sets
Petabytes to exabytes
Disk-based storage
Minutes to hours

Best uses:
* Analyzing warehoused data
* Mining for long term trends

In-Memory Computing Summit Europe 2018

Value of Operational Intelligence [in]Someaing .

UMMITI567%

Business Data captured/ Intelligence Action Opportunity

evlent updlated delivlered taklen explires

Potential . .
?,:IZ;a Lost opportunity Value captured with Bl
In-Memory Computing Delivers Ol in Three Ways:

1. Captures live data with extremely low latency.

2. Continuously analyzes a live system to identify opportunities.

3. Makes automated decisions before the moment is lost.

<= <= <=
Business Data captured/ Intelligence Action Opportunity

evlent upd?ted delivered taken explires

|
Lost opportunity Value captured with Ol

In-Memory Computing Summit Europe 2018 9

Data-Parallel Computing for Ol [in]Someaing .

IMDG can have simple, fast APIs for scalable, data-parallel computing:

e “Parallel Method Invocation” (PMI)
* Follows IMDG’s object-oriented storage model.
* Defines data-parallel tasks as class methods.

* Runs class methods in parallel across cluster
and performs distributed merge of results.

Merge([keys])

* Advantages:

* Uses standard, well understood “eval/merge”
paradigm from parallel supercomputing.

» Takes advantage of cluster’s servers and cores.

* Moves the code to the data; avoid delays due to
data motion.

e Can be used to build more complex data-parallel
operators (e.g., MapReduce)

In-Memory Computing Summit Europe 2018 10

Example of PMI in Financial Services

Back-testing stock trading strategies on stock histories:

* A widely used application -
“embarrassingly parallel”

* Hosted an IMDG in Amazon EC2
using 75 servers holding 1 TB
of stock history data in memory

IMDG handled a continuous
stream of updates (1.1 GB/s)

Results: analyzed 1 TB in
4.1 seconds (250 GB/s).

* Observed near-linear scaling as
dataset and update rate grew.

In-Memory
I N |Computing
SUMMIT]

500 -

450 -

400 -+

350 -

300 -

250 -

200 -

150 -

Throughput (gigabytes/second)

100 -

50 -+

0

Analysis Throughput

—=No updates
=—=Update rate 10 MB/s per server

Updaterate 15 MB/s per server

Aggregate data update rate (75 servers):
750 MB per second
1.1 GB per second

Complete map/reduce on 1 TB data set:
2.2 seconds
3.4 seconds
4.1 seconds

Grid Servers 10

Dataset Size

T T T T T T
20 30 40 50 60 70
224 GB 1TB

1
80

EUROPE

In-Memory Computing Summit Europe 2018

11

The Benefit of Computing in the IMDG

* Using IMDG as a cache
causes data motion for
every operation.

* Network access creates
a bottleneck that limits
throughput and
increases latency.

* Avoiding data motion
enables linearly
scalable throughput for
growing workloads =>
predictable, low
latency.

In-Memory
In Compu"ng EUROPE

SUMMI TI505%

PNl v3. Randem Access Throughput Comparisen
2 tirme seriex obfects

r— 055 Pl = Fandom Access

Oblecty par Sacand

-/0\8 ¥ 818

Numbor of Nodss 4 B 12 16 28 24 F .| 22
Number of Oblecta %12 1824 1838 ZR4E 832 72 3584 4308

In-Memory Computing Summit Europe 2018

12

. In-Memory
Data-Parallel Execution Steps [in]Someaing .

* Eval phase: each server queries local * Merge phase: all servers perform binary,
objects and runs eval and merge distributed merge to create final result:
methods: * Merge runs in parallel to minimize

* Accessing local objects avoids data motion. completion time.
« Completes with one result object per server. * Returns final result object to client.

@ e |

X 7

' 4))

W,

&) ' & |\

CORE CORE
e f i

=
\H f — f CORE \ Parallel Method

Parallel Method
Execution Engine

Parallel Method Parallel Method

Execution Engine

Merged Results

=

[

S Execution Engine Execution Engine

[

2 O 4 - 4 /
Analyze] Parallel Method CORE CORE
{cupdate and —* Query Engine a Execution Engine \ ’ ['

@

ssssssssssss

g

Parallel Method
Execution Engine

Query Engine

sy|nsay pabiapy
Merged Results

In-Memory Object Store

& Grid Service

s)|nsay pabispy

» Query Engine

?
) O
CERACY

In-Memory Object Store

X Grid Service J4

In-Memory Computing Summit Europe 2018 13

Example in Financial Services [in] &t

e Goal: track market price fluctuations for a hedge fund
and keep portfolios in balance across market sectors.

Strategy: High Tech
Target=$80M
Strategy Rules
MSFT

e Solution:

» Keep portfolios of stocks (long and short positions)
in an object collection within IMDG.

* Collect market price changes in

one-second snapshots. % e (e 00 o
* Define a method which applies a Feed Pvies Snagehots O

snapshot to each portfolio and optionally
generates an alert to rebalance.

* Perform periodic (1/sec) parallel method invocations
on the collection of portfolios.

 Combine alerts in parallel using a second user-defined
merge method.

* Report alerts to Ul every second for fund manager.

Position

Position

In-Memory Computing Summit Europe 2018

Outputs Continuous Alerts to the Ul

* PMI runs every second; it completes in 350 msec. and immediately refreshes Ul.

Market

AAPL 452 AAPL 461

MSFT 28.2 MSFT 28.3
GM 28.6 GM 28.2

Feed

Price Snapshots

* Encapsulates proprietary
analysis algorithm.

* Ul alerts trader to portfolios
that need rebalancing.

* Ul allows trader to examine
portfolio details and determine
specific positions that are out
of balance.

. Strategy Alerts Dashboard

Strategy List (first 100 items out of 2000):

Strategy Name -
[Strategy 000
A Strategy 001
[Strategy 002
3 Strategy 003
& Strategy 004
3 Strategy 005
3 Strategy 006
3 Strategy 007
3 Strategy 008
[Strategy 009
3 Strategy 010
A Strategy 011
3 Strategy 012
3 Strategy 013
3 Strategy 014
 Strategy 015
3 Strategy 016
3 Strategy 017
3 Strategy 018
3 Strategy 019
3 Strategy 020
3 Strategy 021
3 Strategy 022
3 Strategy 023
3 Strategy 024
3 Strategy 025
[Strategy 026
3 Strategy 027
3 Strategy 028
3 Strategy 029
3 Strategy 030

m

Control Panel

Stop monitoring Refresh data every |1 = second(s)

Positions Evaluated: 40,000

Strategy 011 details:

Throughput (pos/sec): 40,000

o e

Alert Threshold (%): 5

Number of Alerted Strategies: 16

3 Strategy 031 -~

Position
Type
Core
Core
Core
Core
Core
Core

Core

Core

Core

Hedge
Hedge
Hedge
Hedge
Hedge
Hedge
Hedge
Hedge
Hedge
Hedge

Ticker

AFGRF
ABT.TO
AMRWF
ADNY
AEBXX
ACBVX

[

AFYCX
APKT
ACTNNX
ANSXF
ABSYX
APF
ADLI
AAMNEX
ACBGX
ANQIX
AMMCF
AHLPR
AGREX

Price

$59.53
$48.29
$28.13
$38.41
$37.04
$42.78
$28.93
$103.80
$40.90
$30.01
$17.74
$48.23
$88.55
$51.47
$41.88
$63.34
$15.67
$4.61
$3.69
$16.28

Position

703
976
1,839
1,139
1,166
976
2517
498
938
1,708
320
101
66
103
147
74
389
1,362
1,362
303

Target
Allocation

(%)

10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%
10.00%

Actual
Allocation
(%)
8.65%
9.75%
10.70%
9.05%
8.93%
8.63%
15.06%
10.69%
7.93%
10.60%
10.34%
8.88%
10.65%
9.66%
11.22%
8.54%
11.11%
11.45%
9.15%
8.99%

Exposure

$41,849.94
$47,130.14
$51,733.06
$43752.18
$43,189.57
$41,752.49
$72,819.18
$51,693.87
$38,360.30
$51,258.57
$5,675.29
$4,871.19
$5,844.40
$5,301.17
$6,155.67
$4,686.87
$6,096.98
$6,281.33
$5,022.74
$4,933.22

Deviation
(%)

-1.35%
-25%
70%
-95%
-1.07%
-1.37%
5.06%
69%
-2.07%
60%
34%
-1.12%
65%
-.34%
1.22%
-1.46%
1.11%
1.45%
-85%
-1.01%

|

I

<

IO IO

ool

In-Memory Computing Summit Europe 2018

15

Ol Example in Logistics [in]Someaing .

Goal: Match orders to inventory in real time and
report issues before committing Compute Cluster

orders for perishable goods.
el =/~ BB - B o000

Alerts

* Customer’s approach:
 Use IMDG as a cache with orders and

Query (orders); Get (inventory)

inventory changes stored as objects by SKU in * ? f * f
separate name spaces. (-
In-Memory Data Grid
* Perform nightly reconciliation; for each SKU: orders
* Query all orders by SKU. OQ%O Inventory
* Query inventory changes by SKU. %QO
* Run proprietary reconciliation algorithm and generate o
alerts. &’
* Problems: — —
* Very poor performance (1+ hours) due to parallel — —
gueries and data motion Database Database

* Results not available in real time

In-Memory Computing Summit Europe 2018 16

. In-Memory
Data-Parallel Solution [in]Someaing .

2018

Key challenge for data-parallel
computing: choose the right domain

e Solution: Stored data by SKU in the In-Memory Data Grid

reconciliation on all SKU objects. Orders

IMDG and perform data-parallel @ @ @ — @“ N RO

* Advantages:

Inventory

Merge operation returns alerts. @ Changes
L)

Pre-joined orders and inventory to avoid Data.Parallel :
queries Analysis 1 l O Alerts
Avoided network bottleneck from sending

objects to external compute cluster.

Eliminated need for a compute cluster. EEEI
Reduced reconciliation time to <1 minute. :

Enabled real-time alerting. Analyst

In-Memory Computing Summit Europe 2018 17

Single Method Invocation (SMI)

* Another form of data-parallel computation

* Created for a financial services application
performing column-oriented computations.

* Invokes user-defined method on a single,
selected object:

* Ships parameters to invoking method.
* Enables object to be updated.
 Efficiently returns results to invoking client.

* Benefits:

* Avoids data motion to/from client.

* Encapsulates application code and
stages code in the grid.

* Minimizes latency to invoke method and
return results.

Client app. (user request):

R=f1(A, P) N f2(D, P) N f3(K, P) =>
R1 = nc.SMI(“A”, f1, P);
R2 = nc.SMI(“D”, f2, P);

R3 = nc.SMI(“K”, f3, P);

R=R1R2) R3;

f1("A")

ilA.H’ i B.”

i C).’

Grid Servers

f3(“K")

II'G.P) i H”‘ i K.U

Example of a Column-Oriented Computation with SMI

In-Memory Computing Summit Europe 2018

18

. In-Memory
How an IMDG Runs Computations [in]Someaing .

* Each grid host runs a worker
process which executes
application-defined methods
on stored objects.

* The set of worker processes is
called an invocation grid (1G).

* |G usually runs language-
specific runtimes (JVM, .NET).

* IMDG can ship code to the IG

workers.

* Key advantages for IGs: g EEEs020 B0 BE

* Follows object-oriented model. SO RIREE INRERS RS RS S

* Avoids network bottlenecks by f:f:f:f:f:\;:;:;:;:;:;:-:-:;:;:;:/fffffffffffffffffffff:;:;:;:;:;:-:-:;:;:;fffffff:f:fffffffffff:\;:;:;:;:-:;:;:;:-:;:;ffffffffff

moving computing to the data. - Fost o Hest2o o Host3

* Leverages IMDG's cores & ~ InMemoryDataGrd
servers.

In-Memory Computing Summit Europe 2018 19

IMDG Executes Data-Parallel Methods [in]Someing .

Method execution implements a
batch job on an object collection:

c o f o - D
e Client runs a single method on all LS e Lo
biects i llecti IG IG IG
ODJECLS In a cofliection. Worker Worker Worker
e Execution runs in parallel across the
orid.
e Results are merged and returned to m * m * m *
the client. ‘ N (O % & %
. Invoke parallel method Grid Grid Grid
Client Service Service Service
Return merged results s ~N - N s ~
\ X e
Local Local Local
\\ Memory . A Memory) k\ Memory J

In-Memory Computing Summit Europe 2018 20

IMDG Executes Methods for Single Objects

Method execution runs independently

for each request:

* IMDG directs request to a specific
object for execution with low latency.

* IMDG executes multiple methods in
parallel for high throughput.

Client
N

Client
N

Client

Invoke method

Return Results

Invoke method

Return Results

Invoke method

Return Results

LY

L
IG

Worker

i

~

Grid
Service

\\

o

Local
Memory

L
G

Worker

y,

J

Ay

i

N

Grid
Service

IG
Worker

i

Grid
Service

In-Memory Computing Summit Europe 2018

21

Ol Example: Tracking Cable Viewers [in] Samiing

e Cable Company’s Goals:
* Make real-time, personalized upsell offers.
* Immediately respond to service issues & hotspots.

* Track aggregate behavior to identify patterns, e.g.:
* Total instantaneous incoming event rate from set-top boxes

* Most popular programs and # viewers by zip code

* Requirements:

* Track events from 10M set-top boxes with 25K
events/sec (2.2B/day).

* Correlate, cleanse, and enrich events per rules (e.g.
ignore fast channel switches, match channels to
programs) within 5 seconds (from current 6+ hours).

» Refresh aggregate statistics every 10 seconds.

In-Memory Computing Summit Europe 2018

Implementation with both SMI and PMI

Each set-top box is represented as an object in the IMDG

In-Memory
I n Compu"ng | EUROPE

SUMMITlz201s

Object holds raw & enriched event streams, viewer parameters, and statistics

IMDG captures incoming events by
updating objects

IMDG uses both forms of data-
parallel computation to:

* immediately update box objects to
generate alerts to recommendation
engine using SMI, and

e continuously collect and report global
statistics using PMI across box objects

Demonstrates the use of an IMDG for
stream processing.

" Real-Time Recc. ' Enriched
~ Feedback Engine - Set-Top Box Data

Set-Top Boxes \/
<z
s €&

Real-Time
State Chani

In-Memory Computing Summit Europe 2018

23

Synthetic Workload Demonstration [in]Sameing ., .

UMMITI507%

Built a POC to demonstrate performance and

(4 Kabletown Demo - o IEH
Scalability for Cable Vendor: Dashboard Programs Cable Box Lookup -
* Based on a simulated workload for San / =
< 20000

Diego metropolitan area

* Continuously correlated and cleansed [
telemetry from 10M simulated set-top
boxes (using a synthetic load generator)

Top 20 Programs =} Top Shows by Zip

rrrrrrr

Viewer Count Ci
Income Property 62471 53
* Processed more than 30K events/secon
Border V 62150 70 NGCI
Little Le: seball 62088 3ESH
How Sh: t 62006 3!

* Enriched events with program information
every second

* Tracked aggregate statistics (e.g., top 10
programs by zip code) every 10 seconds

Real-Time Dashboard

In-Memory Computing Summit Europe 2018 24

IMDG Processes Events with ReactiveX

ReactiveX reduces latency for each
request compared to SMI:

* IMDG directs events to a specific
object for handling by ReactiveX

observers.

* IMDG handles multiple events in

parallel for high
throughput.

Client
N

Client
N

Client

Invoke method

Return Results

Invoke method

Return Results

Invoke method

Return Results

L
IG

Worker

i

~

Ay

Grid
Service

\\

o

Local
Memory

L
G

Worker

y,

J

LY

i

N

Grid
Service

IG
Worker

i

Grid
Service

In-Memory Computing Summit Europe 2018

25

Stream Processing for Fast Queries [in]Someaing .

Challenge: How to query stock histories that are
being continuously updated from a ticker feed?

* Requirements:

* Must hold all prices from today’s and yesterday’s
ticker feed.

* Must support 1000s of simultaneous queries.
* Each query must see the latest price updates. Client Queries

* Queries may have hotspots due to popular stocks. l l l

Stock Market Feed Replicated Database

e Current solution:

* Replicate all stock price data across
12+ databases for simultaneous
access.

* Use a compute cluster.

* Not clear how to keep databases
coherent; expensive

In-Memory Computing Summit Europe 2018 26

Solution Using an IMDG

e Store each stock’s price history as a pair of objects (today’s and yesterday’s prices).

* Apply updates to today’s stock prices as streaming

events.

* Query stock prices with fast key/value reads.

* Client caches host latest values for objects; using
2+ objects per stock minimizes data motion.

* Implement a special read mode that always reads

cache and asynchronously

applies updates.
* Advantages:

* All queries have fast, predictable

latency.

* Hotspots do not affect latency.

Stock Market Feed

In-Memory
| N | Computing

SUMMITIS

Client Queries

1 11

In-Memory Data Grid
@) @) O
@) O

ROPE

18

In-Memory Computing Summit Europe 2018

27

Stateful Stream-Processing on an IMDG

* IMDG is well suited to use the “digital twin” model
created by Michael Grieves; popularized by Gartner.

* This model represents each data source with a grid
object that holds:

An event collection
State information about the data source

Logic for analyzing events, updating state, and
generating alerts

e Benefits:

Offers a structured approach to stateful stream processing.

Automatically correlates incoming events by data source.
Integrates all relevant context (events & state).

Enables easy deployment of application-specific logic (e.g.,
ML, rules engine, etc.) for analysis and alerting.

Provides domain for aggregate analysis and feedback.

m

}

J

e

Post & Analyze &
Evict Alert
' Ay

Digital Twin State

-
In-M7(ry Data Grid
(DT)

0
N\

J

o

g

Data-parallel analysis

In-Memory
Computing
SUMMI T e "

Database

In-Memory Computing Summit Europe 2018

28

Example: Tracking a Fleet of Vehicles [in]Someaing .

2018

* Goal: Track telemetry from a fleet of cars or trucks.

* Events indicate speed, position, and
other parameters.

* Digital twin object stores information @ === QAR 77T
about vehicle, driver, and destination.

* Event handler alerts on exceptional
conditions (speeding, lost vehicle).

In-Memory Data Grid

------------- Telemetry = = =
-~ - --Feedback== === ===

* Periodic data-parallel analytics
determines aggregate fleet
performance: Eval ¢

 Computes overall fuel efficiency, driver

_J
performance, vehicle availability, etc. M
* Can provide feedback to drivers to optimize

.)
operations.
Data-Parallel Analytics

In-Memory Computing Summit Europe 2018 29

Example: Heart-Rate Watch Monitoring [in]éomeiing .

SUMMITI56%%

Tracks heart-rate for a large population of runners:
* Heart-rate events flow from smart watches to their respective digital twin objects for analysis.

* The analysis uses wearer’s history, activity, and aggregate statistics to determine feedback and
alerts.

4)
In-Memory Data Grid Feedback

------------- = —

Results
- - Data
------------- - —_—

\ Data-Parallel
_J Analysis

Feedback

In-Memory Computing Summit Europe 2018 30

Data Parallel Analysis Across all Digital Twins [in]Someaing .

* Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

c In-Memory Data Grid .
* Results can be reported to @
----- >
analysts and updated every N B4 T -@—
few seconds. 4 = (Q)
------------- >@
.

e Results can be used as feedback

to event analysis in digital S - f?

twin objects and/or reported Nt O s ’®——’
tousers. TR L RN | = -@)

Data-Parallel
Analysis

Feedback

In-Memory Computing Summit Europe 2018

31

Example: Ecommerce Recommendations

Goal: Deliver real-time recommendations to
1000s of online shoppers.

* Each shopper generates a clickstream of
products searched.

* Stream-processing system must:

* Correlate clicks for each shopper and associate
with shopper’s preferences.

* Maintain a history of clicks during a shopping
session.

* Analyze clicks to create new recommendations
within 100 msec.

* Analysis must:

* Take into account the shopper’s preferences and
demographics.

* Create and use aggregate feedback on
collaborative shopping behavior.

219

Shopper Profie

Immediate Real-Time ﬁl
Recommendations

Shopper
Clickstream

In-Memory Computing Summit Europe 2018

32

EIg-Mem?ry
omputing
n SUMMI T30 "

* Requires scalable stream-processing to analyze each click and respond in <100ms:
* Accept input with each event on shopper’s preferences.

Providing Recommendations in Real Time

* Provide aggregate feedback on best-selling products.

e)
Set Preferences . .
Suggestions for This Purchase

M R R

Rating

|

Best Selling

y A
TR T R

Most Viewed

I —

No |

LG -27.7 Cu. Ft.
French Door-in-Door
Refrigerator - Black
stainless steel

(2)
On sale: $2,299.99

(54)

LG -27.8 4-Door
French Door
Refrigerator -

(o=

-~

Stainless steel
(54)
On sale: $2,099.99

Counter-Depth
Refrigerator -

LG -27.7 Cu. FL.
French Door-in-Door
Refrigerator - Matte
Black Stainless Steel
(2)
On sale: $2,349.99

(77)
On sale: $1,999.99

Stainless steel] LG - 27.8 4-Door ’ [(| LG - InstaView™ l “ LG - 27.9 French Door
French Door u g Door-in-Door® 23.5 n Refrigerator -
FreestamingJ Refrigerator - Black ', - Cu. Ft. French Door e Stainless steel
stainless steel — |

No]

D)) T T) ()

Astamatin 1

On sale: $2,199.99

(195)
On sale: $2,799.99

In-Memory Computing Summit Europe 2018

33

Implementation Using Digital Twin Objects

Tracks shoppers as digital twins and
makes real-time recommendations:

* Each DT object holds clickstream of browsed
products, preferences, and demographics.

* Event handler analyzes this data and
immediately updates recommendations.

* Product descriptions are kept in second
object collection in the IMDG.

* These descriptions are uploaded from
the product database.

* Periodic data-parallel, batch analytics across
all shoppers determine aggregate trends:

* Examples include best selling products,
average basket size, etc.

* Used for analysis and real-time feedback

~ .

d
N

b

o

[a)

o

2le

o o

] =

Q w

i)

=4

o

3

wv

Shoppers

A\

In-Memory Data Grid

Shoppers Products

Aggregate
Feedback

Data-Parallel
Y

wla

In-Memory
In g mpu"ng EUROPE

UMMITI507%

Updates

<
<
e

Product
Database

In-Memory Computing Summit Europe 2018

34

Providing Key Aggregate Metrics

* Periodic data-parallel
computation generates
aggregate statistics across DT
objects for all shoppers.

* Tracks real-time shopping behavior.

* Charts key purchasing trends.

 Enables merchandizer to create
promotions dynamically.

* Aggregate statistics can be
shared with shoppers:

* Allows shoppers to obtain
collaborative feedback.

* Examples include most viewed
and best selling products.

-Memory

Nm
oC

ScaleOut InSite Home

Key Metrics

Number of Active
Customers

750

Number of Products
Viewed

Dashboard Manage Rules

Total Active Cart Value
$27,800.00

Number of Products
Carted

6820 350
Top 5 at a Glance
Top 5 Product Categories by Revenue ¥ ‘ ® Now At:l 00 v|| 00 v|uTC

Top 5 Product Categories by Revenue
alu

@

e
$107,074.00
$92,718.00
$108,832.00
$121,716.00

$106,752.00

Metrics

Statistic

Max Clicks to Purchase

Max Clicks to Successful Recommendation

Max Clicks to First View

Conversion Rate

Average Clicks from Cart to Purchase
Max Clicks from Cart to Purchase

% Reduction in Average Clicks to Cart

Boost Factor

Potential Conversion Rate

Potential Revenue Increase

Average Purchase Size

% Carts Purchased

% Carted Products Recommende:

% Purchased Products Recommende:

4:09:00pm 4:39:00pm 5:09:00 pm

ended

5:39:601pr0

95.00%
$2,000,000.00
$250.00
85.00%
95.00%

89.00%

0 pm

ROPE

In-Memory Computing Summit Europe 2018

35

Wrap-U [In]Someuiing
p p SUMMITl30m "

In-memory computing enables operational intelligence.

* Challenge: using an IMDG solely as a cache does not take advantage of its ability to
introspect on live data and return results in real time.
e Users tend to view IMDGs as in-memory databases and rely heavily on queries.

* Operational intelligence can capture new opportunities that boost competitive value.

* Data-parallel computing for Ol in an IMDG offers several key benefits:

* It boosts application performance by moving code to the data, avoiding network bottlenecks.

* It can be implemented using object-oriented constructs, which cleanly separate application code from
the IMDG’s orchestration mechanisms.

* |t delivers results in real time for live data.

* Stream processing in an IMDG allows deeper introspection than previously possible:
* IMDGs provide an excellent platform for the digital twin model, which has many applications.

In-Memory Computing for Operational Intelligence

www.scaleoutsoftware.com

