
Pushing Enterprise Software to the Next Level  
Self-contained Web Applications on In-Memory Platforms

MICHAŁ NOSEK

Who am I? ▪ Michał Nosek 
Software Engineer, Sales Engineer – Starcounter 
http://starcounter.com

▪ Twitter: @mmnosek 
Github: mmnosek 
LinkedIn: https://www.linkedin.com/in/mmnosek 
E-mail: michal@starcounter.com

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Enterprise Software of Today

Monolith

▪ Maintainability
▪ Long builds
▪ Technology lock-in
▪ Long TTM

Micro-Services

▪ Orchestration
▪ Eventual consistency
▪ Communication problems
▪ Complexity

Wirth’s law

“What Intel giveth, Microsoft taketh away.”

“What Andy giveth, Bill taketh away”

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Wirth’s Law

“What Intel giveth, Microsoft taketh away.”

“What Andy giveth, Bill taketh away”

Conventional In-Memory

Conventional In-Memory

Pros and Cons

Pros

▪ Getting faster
▪ Better utilised by modern CPUs

Cons

▪ Communication isn’t faster
▪ It’s not durable
▪ Not getting cheaper anymore?

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Pros and Cons

Pros

▪ Ubiquitous (no native, separate process)
▪ Semantics (content) vs Presentation
▪ Modularity as priority (reusability)

Cons

▪ Still not implemented everywhere
▪ Global scope (one app can break

something in another)
▪ Online requirement

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

source:  
scs-architecture.org

SCS Architecture

SCS Architecture

SCS Architecture

SCS Architecture

System 1 System 2

Pros and Cons

Pros

▪ Modularisation
▪ Maintainability
▪ Loose coupling

Cons

▪ Integration
▪ Common look and feel
▪ Inconsistency

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

In-Memory
Application
Platform  
 
For Building
Self-Contained Systems

General Platform Architecture

Traditional Stack vs Starcounter Stack

Data Storage

• In-Memory database
• ACID compliant
• Snapshot isolation
• Flexible

VMDBMS

U.S. Patent No. 8,266,125

VMDBMS

U.S. Patent No. 8,266,125

Business Logic

• Polyglot
• Simplified
• Platform-agnostic
• Real-time

User Interface

• Web native
• Web socket communication
• Design agnostic
• Thin

Demo:  
Simple SCS app

Integration: Data Level

Integration: UI Level

Outcomes

Pros

▪ Modularisation
▪ Maintainability
▪ Loose coupling
▪ Full and easy integration
▪ Common look and feel
▪ Consistency

Cons

▪ Integration
▪ Different look and feel
▪ Inconsistency
▪ Platform lock-in?

Storage Engine Benchmark

▪ YCSB load 5% writes, 95% reads.

▪ 1 x E5-2680v2, 1 machine (20 cores).

▪ 8 cores: 3.5 mln. Ops/sec.

▪ 16 cores: 5.4 mln. Ops/sec.

Full-Stack Benchmark

▪ 1.5 mln. accounts, 500 K remote clients transfer.

▪ Money between accounts (5%) and read totals
(95%).

▪ Transfer and read operations are mixed
randomly.

▪ Starcounter on .NET (1 x EC2 c3.8xlarge): 1 M
OPS.

▪ MariaDB Galera Cluster 5 nodes with Node.js
app server (5 x EC2 c3.2xlarge, EBS root volume
and high network throughput, stored procedures):
55 K OPS.

▪ Ratio suffers for MariaDB doing more writes.

01
Setting the Stage
 RAM Memory
 Modern WEB
 SCS Architecture

02
In-Memory Application Platform
 Architecture
 Single App
 Integration
 Demo
 Future

On Today’s Agenda

Currently vs Future

Starcounter in the Future

Enterprise
Software of
Tomorrow

▪ Simplified

▪ Near real-time

▪ Easy to maintain

▪ Reusable/modularised

▪ Fully web-based

▪ Fast data

▪ HTAP or HOAP

Thank you!
Questions?

