\eli{B]=
YOLTDEB

Intelligent Ingestion

David Rolfe
Director of Solution Architecture, EMEA

In 1984 the world was a very different place...

* Ronald Reagan was president

Name
e 1BM Personal Computer
The IBM Personal Computer R
mernational Besness Machines Corporat

 For only US$3700 (about US$8700 now) you
could buy an IBM PC with 256KB of RAM and a
1MB hard drive.

)

BX)| 44747
Saee
: 5% by 20 by 16 inches: 25 pot
.
ot foe addiion of the H087
RAM standurd 640K
ansion card
0 keys and pemencow
able: adjussable typing
finch Soppydisk deve
wsed by Noppvdisk drive
Soltware
‘l — Diagnostics. Microsolt cassene BASIC mterpreter in ROM
‘ \ Optional Hardware
647 KL oIy sarsion Card with 64K bytes $26%
- 62Kt SN0
§250
08
)
i)

« Multi CPU computers were an exotic rarity.

* There was almost no computer to computer E |
connectivity. Computers interacted with ot
humans. Slowly. | B

'''''''''

* 1984 is roughly when the architecture of the
major RDBMS products was designed.

52420

Then we had the era of the “One Big Database”...

- Organizations realized that data was valuable.

 Very bad practice for Use Cases to dictate data structures
+ Optimization regarded as a last resort. And a sign of failure.

* The database was a repository of corporate data.

* There was one centrally planned database schema that was ‘correct’.
* Everyone was supposed to use it. Or else.
« With hindsight it was all a bit "Soviet”...

3 YOLTDB

It may have been "Soviet” but...

- Databases were a new and radical concept that solved a real problem.

They were inspired by the industrial scale chaos caused by every application ‘owning’
its own data

+ Some of that chaos has returned

Regarding data as an asset that is more important than a single Use Case is ‘common
sense’ Now.

The “One Big Database” was killed by:
 Office politics/organizational complexity
» Operational and design complexity.
+ Lack of suitably miraculous products.
* The PC and virtualization.

We now have gone to the other extreme — microservices and KV stores

YOLTDB

Modern applications are incredibly demanding

Goal: Predict flight delays.

from from

LON London NYC New York

Flights

BAO117 operated by BA

LHR . ° JEK 7 f) ‘i‘ ‘f‘ ‘f ‘i‘ ‘f ‘i‘
08:30 0 stops 11:10 INFO INFO INFO INFO INFO INFO INFO
BAO175 operated by BA

LHR ° ° JEK © i - ‘i‘ ‘f‘ ‘i* ‘i‘ ‘1‘ ‘i‘
09:35 0 stops 12:25 INFO INFO INFO INFO INFO INFO INFO

BAOOO1 operated by BA

,.).
,.).
,_).
,..).

Lcy ° o °
09:40 1 stop 14:05 INFO INFO INFO INFO

n
S INFORMATION The Late
GREVE DU CONTROLE AERIEN A r. r, | V al O f

TRAFIC PERTURBE

e e coNTACTER YoTRE COMEACHIER The Incoming

AIR CONTROL STRIKE

TRAFFIC DISRUPTED 2 . "
PLEASE CONTACT YOUR AIRLINE | A | rl C rlaf -|-

Raw TAF

KJFK 0708092 0708/0812 36004KT P6SM SCT025 BKNO040
FM071400 04009KT P6SM SCT035 BKNO50
FMO071800 15010G15KT P6SM SCT035 BKN050
FMO080100 09009KT P6SM SCT030 BKN100
FMO080900 05005KT P6SM SCT020 SCT100

Raw METAR

KJFK 070951Z 35006KT 10SM FEW060 BKN250 13/11 A3000 RMK AO2 SLP159 T01280106

KJFK 070851Z 35005KT 10SM FEW060 BKN250 12/11 A2998 RMK AO2 SLP152 T01220106 53013
KJFK 070751Z 36004KT 10SM FEW055 BKN250 13/11 A2996 RMK AO2 SLP146 T01330106

KJFK 070651Z 36008KT 10SM SCT024 BKNO055 14/11 A2996 RMK AO2 SLP144 T01440111

YOLTDB

The OODA Loop, and why it's important...

Observe

Orient Decide Act
ici Implicit
Implicit 4
Guidance &%%irt]r?i
Unfolding & Control -
Circumstances\/*
. Obs;rva‘t;@;F_ei D hess Decision Feed Action
____“Forward (Hypothesis) Forward (Test)
Outside A
Information
Unfolding
Unfold. g Feedback Int?Nra}tcglon
Interaction .
With ——Feedback Enwrolnment
Environment Feedback
John Boyd's OODA Loop
1.

In order to ‘win’ your application's loop needs to run faster than ‘reality’

»
i\ unlm“».nnn'ﬁm

il

2. 'Winning’ against a web page means a loop of under 7 seconds.

3. ‘Winning’ in an loT context means a loop of around 7 milliseconds.
4. ‘Winning’ now involves complex decision making at millisecond timescales.
6

YOLTDB

Complexity, Latency and Volumes

Internet
Bandwidth

(GB)

Required Response Time)

Application Complexity

1985 33
1995 150,500
2000 75,250,000
2010 19,974,008,812

2015- >42,423,169,029
2018

7

2 day batch turnaround

2 minute batch

8000ms — Web Page Advertising
100ms - Video Game Analytics /

Sophisticated web advertising
10ms - loT / Many Devices

Row level locking being invented.
Transactions of any sort rare.

Row level locking of 5-10 rows; web servers
using databases.

Web advertising: Cookie -> User ->
Demographic -> Ad

Decisions need to consider
dozens/hundreds of elements

Decisions may need to consider thousands
of elements

YOLTDB

Between 1984 and 2015 a lot changed...

Between 1985 and 2005: Internet Traffic (GB Month), Transistors per CPU and Cost of RAM over time
- CPU power increased by about 100.000.000.000 $10.000.000
1100X 10.000.000.000
$1.000.000
« Ram costs reduced by about 1.000.000.000
4500X 100.000.000 $100.000
Between 1985 and 2017: 10.000.000 (
' 1.000.000 $10.000
« CPU 200K times more powerful i
- RAM 1/200,000t" the price 100.000 $1.000
10.000
100
—+—Total Internet Bandwidth (GB/Mo) 1.000 $
——Transistors per CPU 100 $10
—*—Price of Ram ($/GB) 10
1 $1
8 1980 1985 1990 1995 2000 2005 2010 2015 voLTDB

We now face real ‘pain’...

» Timescales (“OODA loop”), volumes and complexity all pose challenges.

* We need to take complex decisions, fast:

« Complex Decisions usually involve many different data sources.

- Key Value solutions imply a large number of network trips...

- ...and ACID becomes an issue if your data changes while you are reading it
- Legacy RDBMS implies a lack of scale.

 Decisions involving shared resources usually implies locking or retries

- Many decisions involve aggregate values ("HTAP/Translytics”)

- Many decisions involve telling a third party something

- What we need is the ability to do all of this as the data arrives.

9 VOLTDB
T

Intelligent Ingestion

1. Complex Decisions
2. Multiple Data Sources

3. ACID Batch

o o Processing/
4. Millisecond Timing HDES

5. Massive Scale

YOLTDB

ACID Milliseconds
Transactions

; VOLTDB

— /
SOOI OO O
- R ST (OO

O Gty Lo I S i

= = UO I =
uOI[I
D000 1R I
lli[llm\\ﬂr ﬁOﬁ
O HO O O

HHOOOHHO OO C OO—H —
SRS O N !Iﬁog 1O HOHHO

m\ _ o >S5 HHO000
e e = = = i ¢ L —HOHHOOHH
OO - q : aUIIIIOO

—OHOHEE —

1! OIIOOIOQ
SO O
O — OOOOSE
- {— .

o cooch

RO — O — GO
- 'T\,\lrl_Oﬁ
—— \)Omo C
e~ (@]e) O
= O=iCH
e O @

o O —HOSS
. .’-IO.P
2 Tl Y ¢
{L .I_IOF_O,_.”
JOOOO 1Ok

:u C =
5a @\.
OOF —t
— O HHHO!
O OO -G
PO — —{E
D) —{ <
D S |
” OL"J,

o — O =

Intelligent Ingestion

12 VOLTDB
I OUOUOPEBTEBTCETCTCETETCECTEE™E™SBESSSSSSSS

VoltDB is optimized for Scale, ACID and Latency...

An Ariel Atom. Very good for going round racetracks very quickly in nice weather. Not so good for school

runs, driving tests, shopping, off road activities, as an ambulance, polar exploration, amphibious assaults,
carrying cargo....

13

VolItDB is optimized to
solve one class of
problems better than
anything else that exists.

It is not a general purpose
RDBMS, nor a
replacement for one.

It's used to complement
your existing stack rather
than replacing it.

YOLTDB

RDBMS - How We Thought an RDBMS Worked

O
Wh

O
&N

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

0010100101001010010010100
ID=1, Qty= 200, LastDate= 23 /March/18

0010100101001010010010100
UPDATE users SET BAL = 190 WHERE ID =1;
0010100101001010010010100
INSERT INTO sales luserid, productld, cost) VALUES (42,1,10);
100170700101001010010010100
UPDATE products SET gty = 199 WHERE ID = 1;

0010100101001010010010100

0010100101001010010010100
SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;
0010100101001010010010100
ID=1, Qty= 200
0010100101001010010010100
UPDATE users SET BAL = 190 WHERE ID =1;
0010100101001010010010100
INSERT INTO sales luserid, productld, cost) VALUES (43,1,10);

10010100101001010010010100
UPDATE products SET gty = 199 WHERE ID = 1;

0010100101001010010010100

v\

DISK
DATA

WAITING

Inflight Transactions

YOLTDB

RDBMS - What Actually Happens — Part 1...

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

007010010100101001001010C
ID=1, Qty= 200, LastDate= 23 /March/18

001010010100101001001010C
O UPDATE users SET BAL = 190 WHERE ID =1;
0010100101001010010010100
@ INSERT INTO sales luserid, productld, cost) VALUES (42,1,10);

0010100101001010010010100 RAM

UPDATE products SET qty = 199 WHERE ID = 1;
001100101001001001010(DATA
v el
WAITING =
1001 0010100010010100100 v, E—

Inflight Transactions

001010010100101001001010C
SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

O UPDATE users SET BAL = 190 WHERE ID =1;
0010100101001010010010100
INSERT INTO sales luserid, productld, cost) VALUES (43,1,10);

0010100101001010010010100
UPDATE products SET gty = 199 WHERE ID = 1;

001010010100101001001010C

YOLTDB

15

RDBMS - What Actually Happens — Part 2

0010100101001010010010100
0010100101001010010010100
0010100101001010010010100

0010100101001010010010100 — |

0010700101001010010010100 WAITING

< Inflight Transactions
0010100101001010010010100
0010100101001010010010100
0010100101001010010010100
0010100101001010010010100

0010100101001010010010100

> v

0010100101001010010010100
0010100101001010010010100 v 3
0010100101001010010010100 WAITING p—)

0010100101001010010010100 WAITING
Inflight Transactions

S0 Bo Bo Eo

0010100101001010010010100

16 YOLTDB

The End of an Architectural Era
(It's Time for a Complete Rewrite)

Michael Stonebraser Nl Hachem Pal Hel
Samual Maddan AvarmGardn Core,tieg, LG gt Corg
Darviel J. Abaci Anachom & agdea com erolang iz
Stawros Harzogouos
MITCSANL

{storazakir, wadcer, 4%,

stweasj@cssi mi adu
ABSTRACT
Ap——

Toese smpers prseved cowes o
TS ves e o
e

etrecare sagped e yoskreay

1. INTRODUCTION
T s reascet £
form e 1970 F

o Loghusedre

e e eer were eoxrac

OLTP Through the Looking Glass, and What We Found There

Stavros Harizopoulos Daniel J. Abadi
Labs Yale University
Palo Alto, CA New Haven, CT
stavros@hp.com dna@cs.yale.edu
ABSTRACT
Oniine Tramsaction Processing (OLTP) dashuses include 2 suste

of features — diskcresident B-ees and hesp fles, louxl:s Based
concarmeccy cocirol, sapport for mali-treading

optimized for computer techrology of the late 1970's. Advances
in modern proessoes, memories, 37 metworks mean that todsy's
compters are vasly different from those of 30 years 2go, such
hat many OLTP databases will now fit in main memory, and
120 OLTP cnmctionscu bo ocesed i iieconds o b
et datsase anchitectne B changed I

Based on this observation, we Sook 3t some inseresting varians of
conventional databuse systems that ore might buld that explot
recent Bandware treods, and speculate on dheir performance
throcgh 2 etailed instruction-level breakéown o the major com-
ponents involved in @ trmsaction processing databuse ystem
(Shore) e bt of TPC.C. Rather i seply pofcg
Sbare, w
remonl o aptamiation, we hd & () wockiog e tht
flly ran our worilosd. Overall, we identify overheads and opti-
‘mzations that explain a tota difference of sbot a fecior of 20x
in row performance. We also show tat there is 20 single “High
pole i the teat” in moders (memory residens) datzbuse

bttt sbstantial time s spent & logging, Inching, locking, B.

e, 0 buffer managemess operations,

Categories and Subject Descriptors
124 [Database Management]: Syviems - ransaction prcess.
ing; concurrency:

General Terms
Measuremecs, Pesformance, Experimetation.

Keywords
Online Trsnsaction Processing, OLTR, main memery ssmssction
srocessing, DBMS sscbiecure.

this notice and the fll ciion on e firt puge. To copy olberwise, or
epubiish, 10 post ca servers o o redistrbute to s, reguites pioe ge-
i oo ndee .

SIGMOD'DS, Juoe

Copyrigh 2008 ACN 5711605581

2008, uncosve, BC, Cansde
0865500

Samuel Madden Michael Stonebraker
Massachusets Institute of Twhrlok;g
Cambr

{madden, smnebrakaf)@csall mit.edu

1. INTRODUCTION

buffer mamager. These features were developed to suppart trars:
action processing in the 1970's and 1980's, when an OLTP data-
base was many times larger than the main memory, and

compusers that ran these catsdises cost Eundreds of thoussnds to

parchanod. Furtacmare, 1t i ot sacoemmen fo Edions 10
own networked clustens of many suck workstations, wits SggRe
gute memory messared in hundreds of gigabytes — sufficiens to
keep mazy OLTP databases in RAM.
Second, the rise of the Inteross, as well as the variety of dsta
iesivespplicasons s i 8 mmber of Gomaias, s I 0 4
= i dabuselike =,,=mmm without the full
of sandand datsbuse featres. ng ysens aad e
Coofrence ae e ul of roponts o

th varying forms of consisiency, mmmy g
rercy, weplicaton, and queryability [DGO4, CDG+06, GBH-00,

)}

SMK/01

Thi rsog doamd o daibes ik srvice, coxpled with
matc performance improvements i cos

ware, suggests 3 number of interesting i) \yslzrm tat
ome might buld with 2 different set of festures thar those pro-
vided by standard OLTP engines.

1. 1 Alternative DBMS Architectures

optimizing OLTP systems for msin memory is 3 good

ides when a dutzbase fits i RAM. But a cumber of other data-

base variants are possible; for example:

" Lovkem dntabues A og i st syvem s it
st vy o gt petom vy fo ot s

o chste (s wes proponcd sy o flarp (LGG91S,
nub«[mns] i C-Siore [SABIOS)).
Sioye thresded ¢ hhbtm Sice ks eading n OLTP
for Latency miding in the

VoltDB was designed to solve this problem

Useful Work
12%

YOLTDB

If we tried this in a supermarket...

YOLTDB

How VoltDB works

D i
O O Bay Bay Local File
m mm Item 1 Item 2 System
WA|T|NG=
O — |
an O | e BY e QTR L :
m ltem 1 Item 2 Inflight Transactions
— -
O o —ar——
aRn R s ey, Local File
— —
v = LRI
—

!%!

BOOK

WAITING
ol. . N |
@R y y : :
mm Item 1 Item 2 Inflight Transactions

19 YOLTDB

How a supermarket works...

YOLTDB

20

The only 3 ways to interact with any database

Approach Examples Strengths Weaknesses

Many SQL JDBC, Liked by * Doesn’t handle scaling OLTP loads well — DB
Statements + ODBC, developers, spends its time figuring out who can see what
Commit or initial instead of working

Rollback developmentis + Constant locking problems for shared, finite

Move all the data
to the client and
back again

Stored
Procedures

rapid

NoSQL, KV Very developer

Stores

VoltDB,
PL/SQL

friendly

Predictable
speed and best

possible
scaling
characteristics

resources
Failure of a client to Commit or Rollback causes a
temporary resource leak

Multiple updated copies of the data can arrive at
the same time for scaling OLTP loads

All of the data gets moved across the network,
every time.

Not in fashion with developers.

PL/SQL created perception of complexity.

Other implementations of Java Stored Procedures
really slow.

21

YOLTDB

— /
SOOI OO O
- R ST (OO

O Gty Lo I S i

= = UO I b
uOI[I I
DO @D
B ==
DO O N
UHOOOHHO OO C OO~ —
S !_I_éo W — O —HO—HHO
_ Ceaoooeeel
C — OO
1 A“V)UIIIIOO

—OHOHEE —

1! O[IOOIOQ
R OO — ‘. o b
O — OO0
B — I HO =

RO tl_l_On
» 'T\,\lrl_Oﬁ
— — \)Omo =
P, ([@)a -y
P O O

e N O— @
DEHO O —HO u

. .’-IO.P
L 1] - O,N
{L .I_IOF_O,_.”
JOOOO awA

:u C =
= e
OOF —t
— O HHHO!
O OO -G
PO — —{E
D) —{ <
pEEla o)
” OL"J,

D ——O— =}

ML: The search for value

ML adds real value when:

« Combined with state

« State can be a composite
of multiple data sources Batch

Processing

| HDFS

* |s used to inform and

influence decisions VOLTDB

ACID Milliseconds

: i Transactions
« Happens in real time

 Happens at scale
23 YOLTDB

VoltDB + ML

 The Good News

* VoltDB appears to work with any ML engine with a Java runtime

* VoltDB can be made to work with any ML engine with a C++

runtime
* Requires JNI expertise

» Caveats
* Runtime engine can’t have runtime dependencies/speak to another server
* Runtime engine must be deterministic

* Runtime engine must be fast (< 5ms)

« >5ms undermines utility of using VoltDB
« Be wary of instantiation costs

2 VOLTDB
T

VoltDB + ML

 Limitations
* Non Deterministic code
* Other servers
* Not C++ or JVM compatible

* Not a showstopper, but...
* Slow

* Example: Neural Nets
* But GPDR may make them unusable in EU anyway...

25 VOLTDB
I OUOUOPEBTEBTCETCTCETETCECTEE™E™SBESSSSSSSS

ML Example — User Defined Function in H20

public class AirlineDemoUDF {

private static String model(lassName = "gbm_pojo_test";

public String ademo(String cRSDepTime, String year, String month, String dayOfMonth, String dayOfWeek,

String uniqueCarrier, String origin, String dest) {

try {

hex.genmodel.GenModel rawModel;

rawModel = (hex.genmodel.GenModel) Class. forName(model(lassName).newlnstance();
EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel);

RowData row = new RowData();

row.put("Year", year);

row.put("Month", month);

row.put("DayofMonth", day0OfMonth);

row.put("Day0OfWeek", dayOfWeek);

row.put("CRSDepTime", cRSDepTime);
row.put("UniqueCarrier", uniqueCarrier);
row.put("Origin", origin);

row.put("Dest", dest);

BinomialModelPrediction p = model.predictBinomial(row);

return (p.label);
} catch (Exception e) {

System.err.printin(e.getMessage());
return null;

26

CREATE FUNCTION ademo FROM METHOD h2@.AirlineDemoUDF.ademo;

CREATE PROCEDURE flight_hist

PARTITION ON TABLE flights COLUMN f_FlightNum AS
SELECT f_cRSDepTime, f_year, f_month, f_dayOfMonth,
f_dayOfWeek, f_uniqueCarrier, f_origin, f_dest
,ademo(f_cRSDepTime, f_year, f_month, f_day0OfMonth,
f_day0OfWeek, f_uniqueCarrier, f_origin, f_dest) ademo
from flights

where f_FlightNum = ?

order by f_year, f_month, f_dayOfMonth,f_cRSDepTime;

YOLTDB

ML Example — Calling JPMML from a Procedure

public VoltTable[] runModel(String pmmlFileName, VoltTable inputParams) throws Exception { pUinC CIQSS GOI fDemo extends VoltPr‘ocedur‘e {

Evaluator evaluator = pmmlEvaluators.get(pmmlFileName);

{f Cevaluator — null) | public VoltTable[] run(double temperature, double humidity,

; throw new Exception("Model " + pmmlFileName + " not found"); String windy, String outlook) throws VoltAbortException {

List<InputField> inputFields = evaluator.getInputFields(); .

Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>(); VOItTOblE[] pmmlOUt’

// Sanity check input params tl"y {

if (inputParams == null) {
throw new Exception("VoltTable inputParams can't be null");)

} JPMMLImpl 1 = JPMMLImpl.getInstance();

if (inputParams.getRowCount() 1= 1) { VoltDBIPMMLWrangler w = 1.getPool().borrowlbject();
throw new Exception("VoltTable inputParams must have one row"); fi nal String modelName - "tree .model";

}
VoltTable paramtable = w.getEmptyTable(modelName);
if (inputParams.getColumnCount() != inputFields.size()) {

throw new Exception("VoltTable inputParams must match length of inputFields. inputParams par‘amtable.addRow(temper‘ature, humldlty' WIndy’ OUt1°°k);
+ inputParams.getColumnCount() + " columns, expect " + inputFields.size()); pmmlout - w‘runMode’l(modelName’ paromtable);
}

inputParams.advanceRow(); .
for (InputField inputField : inputFields) { } catch (Exception e) {

mapVoltparamToPmmlParam(inputParams, arguments, inputField);

} .
System.err.println(e.getMessage());

Map<FieldName, ?> result = evaluator.evaluate(arguments); thl"OW new VoltAbor‘tException(e);

// Processing results

// Retrieving the values of target fields (ie. primary results):

List<TargetField> targetFields = evaluator.getTargetFields(); }

VoltTable resultTable = mapPmmlTargetFieldsToVoltTable(result, targetFields);

// other fields _ _ voltExecuteSQL(true);
VoTtTable otherTable - mappmrlOutputeLdTovaliTableCresins, outputFields); return pmmlOut;
VoltTable[] outputParams = { resultTable, otherTable };

return outputParams; }

Q

2 HUAWEI

-
Credit Card
& Mobile VoltDB
Message Queue > Real-Time
Decision Making
Mobile log-in —
NeW RUIGS
Consumer Data
Banking T
System Spark + Hadoop

28

Near Real Time Data for
Models and Rules

Fraud
Prevention

Single Sign-
on Manager

Consumer
Banking Risk
Management

-~

Application/Use Case
* Fraud Prevention

 Single sign-in of all Huawei phones

« Consumer banking risk management

Why VolItDB?

* >50% reduction in fraud cases

> $S15M/year saved from fraud loss

10k complex Transactions Per Second

99.99% transactions finish < 50ms

10x better performance than

traditional fraud detection

YOLTDB

A Proven and Reliable Partner

lelco Bl ™ MNOKIA et @ LG
utsche ew et!: ackar

Billing/rights management, subscriber data, etc. Shaw) =« I[F (LT Enterprise

Financial Services Flomon grmxsms o &
Risk, market data management, customer mgt. P oone o Dlacmoamacarvaa THOMSON BARCLAYS
Personalize, Customize, Target

’ J triplelift YAHOO! ?f/
vodaarone

Ad optimization, audience segmenting, customer service @m=s

loT Platforms, Energy, Sensor

oUWy, Hokkaido Electric Power Co.,Inc.
s@ HUAWE] ;:s N‘IART okkaido Electric Power Co.,Inc)‘“EAIETESCUI.%"%N
Smart grid/meters, asset tracing & management

SHIKOKU ELECTRIC POWER CO,INC.

Infrastructure, Dashboards, KPlIs 9 <nimble
axiata storage

Data pipeline, system performance, streaming ETL.
29 VYOLTDB

