Want extreme performance at scale?
Do distributed the RIGHT way!

Valentin Kulichenko
Apache Ignite Committer
GridGain Lead Architect

© 2017 GridGain Systems, Inc.

Distributed Storage

JCache & SQL Transactions Compute ACID Transaction

Distributed
parttioned

hash map

DURABLE MEMORY DURABLE MEMORY DURABLE MEMORY

$ $ Laing $

@ HDFS

“ @ RDBMS
\ =

NoSQL
ON-DISK —

3rd party storage caching

ON-DISK ON-DISK

© 2017 GridGain Systems, Inc.

Where Is The Challenge?

Data Affinity

© 2017 GridGain Systems, Inc.

Where Entry Goes?

put (key, value)

Ignite Node 1 Ignite Node 2

© 2017 GridGain Systems, Inc.

Caches and Partitions

Cache

Partition 1 Partition 2

© 2017 GridGain Systems, Inc.

Partitions Distribution

Ignite Node 1 Ignite Node 2

© 2017 GridGain Systems, Inc.

Affinity Function

Server Node

Key # Partition #

© 2017 GridGain Systems, Inc.

Where Entry Goes?

put (key, value)

/

Ignite Node 1 Ignite Node 2

© 2017 GridGain Systems, Inc.

Co-located Processing

© 2017 GridGain Systems, Inc.

Client-Server Processing

Server Node

2 Data 1 ’
ClientNode I sl ST
é \ Server Node
2 Data 2

$

ON-DISK

1. Initial Request
2. Fetch data from remote nodes
3. Process entire data-set

© 2017 GridGain Systems, Inc.

Co-located Processing

Server Node

g

$
1 Client Node ON-DISK

— ¢

O

3 -

ON-DISK

Server Node

$

1. Initial Request
2. Go-located processing with data
3. Reduce multiple results in one

Use Case: Account Balance Update

class Account {

String firstName; Account account = cache.get (123);
String lastName;
String address; account.balance —= 100;

cache.put (123, account);

double balance;

© 2017 GridGain Systems, Inc.

Use Case: Account Balance Update

cache.1invoke (123, new EntryProcessor<Integer, Account, Object>() {
dOverride public Object process (MutableEntry<Integer, Account> entry,

Object... args) {
Account account = entry.getValue();

account.balance —= 100;

entry.setValue (account) ;

return null;

© 2017 GridGain Systems, Inc.

Co-located Data

© 2017 GridGain Systems, Inc.

Use Case: Payment Transaction Authorization

For each new transaction:
int accountId: * Find all transactions for the account ID

String storeName; * Go through the list, calculate authorization

double amount; variables
} » |f transaction is authorized, add it to the list

class Transaction {

© 2017 GridGain Systems, Inc.

Affinity Key

Server Node

Key q Partition #

© 2017 GridGain Systems, Inc.

Affinity Key

Account ID

Server Node

Key wwll»= Affinity Key wwll Partition we i p

© 2017 GridGain Systems, Inc.

Affinity Key

class TransactionKey { ignite.compute () .affinityRun (
int transactionId; "transactions", // Cache name.
123, // Account ID.
QAffinityKeyMapped () => { ... } // Computation.

int accountld;) ;

© 2017 GridGain Systems, Inc.

Co-location and SQL: Indexing

© 2017 GridGain Systems, Inc.

Let’s Run a SQL Query!

SELECT AVG (amount) FROM Transaction WHERE accountId = ?

Server Node Server Node Server Node Server Node

© 2017 GridGain Systems, Inc.

Executing SQL: Full Scan

» 1/3x latency
* 3Xx capacity

1 node 3 nodes

But What If We Use Index?

© 2017 GridGain Systems, Inc.

Indexed Search Complexity

log 1 000 000

log
log
log

VS.
333 333
333 333
333 333

Q&

R X

20

18
18
18

—
-

O

Q.
M

Executing SQL: Indexed Search

3 ﬁodes

* ~same latency
e ~Same capacity

Let’s Co-locate

SELECT AVG (amount) FROM Transaction WHERE accountId = ?

Server Node Server Node Server Node

ok

© 2017 GridGain Systems, Inc.

Executing SQL: Indexed Search With Co-location

* same latency
» 3Xx capacity

1 node 3 nodes

Co-location and SQL: Joins

© 2017 GridGain Systems, Inc.

Random Distribution

Ignite Node Ignite Node

Toronto

Canada

Calgary New Delhi

© 2017 GridGain Systems, Inc.

Non-Collocated Joins

Ignite Node

Toronto

Lo

Calgary

1 SELECT ct.name, count(c.name)
FROM Country as ct
JOIN City as ¢ ON c.countryCode = ct.code ‘
WHERE ct.name IN ('Canada', 'India') GROUP BY (ct.name); Montreal
=
@ 3 = Mumbai
4

\/ Ottawa
N
Q

1. Initial Query .
2. Query execution (local + remote data) New Delhi

3. Potential data movement
4. Reduce multiple results in one

Ignite Node

© 2017 GridGain Systems, Inc.

Affinity Collocation

Server Node

key (countryld = 5) *

$

ON-DISK

key (cityld = 10, countryld = 5)

Server Node

key (cityld = 11, countryld = 9)

ON-DISK

© 2017 GridGain Systems, Inc.

Collocated Distribution

Ignite Node Ignite Node

Toronto

Montreal Mumbai

Canada India

Ottawa New Delhi

Calgary

© 2017 GridGain Systems, Inc.

Collocated Joins

Ignite Node

Toronto

) g Ganada Ottawa

Montreal

Calgary

SELECT ct.name, count(c.name)

FROM Country as ct
JOIN City as ¢ ON c.countryCode = ct.code
WHERE ct.name IN ('Canada’', 'India') GROUP BY (ct.name);

°/ Ignite Node

3

Mumbai

India

New Delhi

1. Initial Query
2. Query execution over local data

3. Reduce multiple results in one

© 2017 GridGain Systems, Inc.

Any Questions?

Thank you for joining us. Follow the conversation.

btio/ioni he ore

@apacheignite
@vkulichenko

© 2017 GridGain Systems, Inc.

