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Do distributed the RIGHT way!
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Where Is The Challenge?




Data Affinity

© 2017 GridGain Systems, Inc.



Where Entry Goes?

put (key, value)

Ignite Node 1 Ignite Node 2

© 2017 GridGain Systems, Inc.



Caches and Partitions
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Partitions Distribution
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Affinity Function
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Where Entry Goes?

put (key, value)

/

Ignite Node 1 Ignite Node 2

© 2017 GridGain Systems, Inc.



Co-located Processing
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Client-Server Processing
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Co-located Processing
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Use Case: Account Balance Update

class Account {

String firstName; Account account = cache.get (123);
String lastName;
String address; account.balance —= 100;

cache.put (123, account);

double balance;
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Use Case: Account Balance Update

cache.1invoke (123, new EntryProcessor<Integer, Account, Object>() {
dOverride public Object process (MutableEntry<Integer, Account> entry,

Object... args) {
Account account = entry.getValue();

account.balance —= 100;

entry.setValue (account) ;

return null;
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Co-located Data
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Use Case: Payment Transaction Authorization

For each new transaction:
int accountId: * Find all transactions for the account ID

String storeName; * Go through the list, calculate authorization

double amount; variables
} » |f transaction is authorized, add it to the list

class Transaction {
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Affinity Key
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Affinity Key
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Affinity Key

class TransactionKey { ignite.compute () .affinityRun (
int transactionId; "transactions", // Cache name.
123, // Account ID.
QAffinityKeyMapped () => { ... } // Computation.

int accountld; ) ;
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Co-location and SQL: Indexing
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Let’s Run a SQL Query!

SELECT AVG (amount) FROM Transaction WHERE accountId = ?

Server Node Server Node Server Node Server Node
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Executing SQL: Full Scan

» 1/3x latency
* 3Xx capacity

1 node 3 nodes



But What If We Use Index?
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Indexed Search Complexity
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Executing SQL: Indexed Search
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Let’s Co-locate

SELECT AVG (amount) FROM Transaction WHERE accountId = ?

Server Node Server Node Server Node
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Executing SQL: Indexed Search With Co-location

* same latency
» 3Xx capacity

1 node 3 nodes



Co-location and SQL: Joins
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Random Distribution

Ignite Node Ignite Node

Toronto

Canada

Calgary New Delhi

© 2017 GridGain Systems, Inc.



Non-Collocated Joins
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Affinity Collocation
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Collocated Distribution
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Collocated Joins

Ignite Node

Toronto

) g Ganada Ottawa

Montreal

Calgary

SELECT ct.name, count(c.name)

FROM Country as ct
JOIN City as ¢ ON c.countryCode = ct.code
WHERE ct.name IN ('Canada’', 'India') GROUP BY (ct.name);
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Any Questions?

Thank you for joining us. Follow the conversation.
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@apacheignite
@vkulichenko

© 2017 GridGain Systems, Inc.



