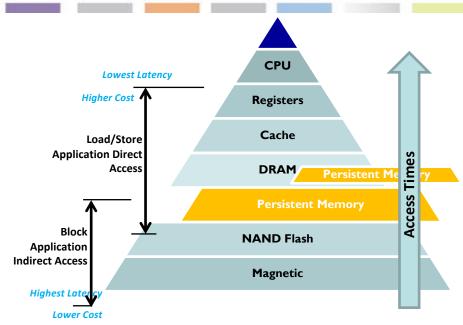


Persistent Memory Advances

Arthur Sainio

Persistent Memory and NVDIMM SIG Co-Chair, SNIA Director, Product Marketing, SMART Modular Technologies

Agenda



- Why Persistent Memory is Important
- Persistent Memory Applications
- SNIA and Industry Alliance Efforts on Persistent Memory

Why is Persistent Memory Important?

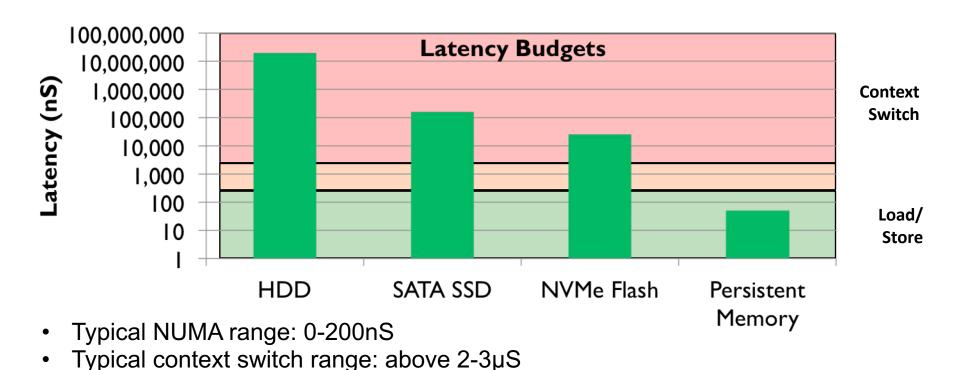
- Bridges the gap between DRAM and Flash
- Dramatically increases system performance
- Enables a fundamental change in computing architecture
- Apps, middleware and OSs
 are no longer bound by file
 system overhead in order to run persistent transactions

What It Is and Isn't and Why is it Important?

What is Persistent Memory?

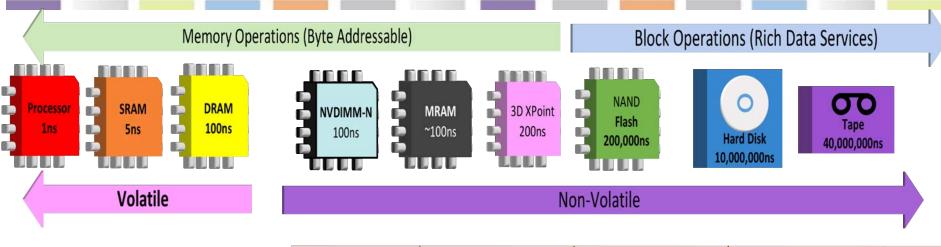
- Non-Volatile
- Byte Addressable
- Low Latency <1µs
- Densities greater than or equal to DRAM (for wide-scale adoption)

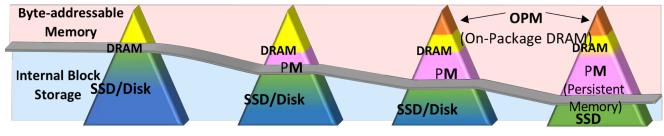
Why is persistent memory important?


- The vast majority of compute applications operate on 1, 2, 4, or 8 bytes at a time
- For maximum performance memory technology must be directly addressable (load/store byte access)
- With non-volatility, compute applications do not need serialization or to commit writes to a lower level (slower) memory tier

Non-Volatile Memory ≠ Persistent Memory

- Non-Volatile memory is not necessarily Persistent Memory in the industry term usage
- NAND flash is paged-based and has millisecond write speeds
- In it's current form NAND Flash by itself is not PM


Storage vs. Memory



Memory and Storage are Converging

 Memory semantic operations become predominant (Volatile & Non-Volatile)

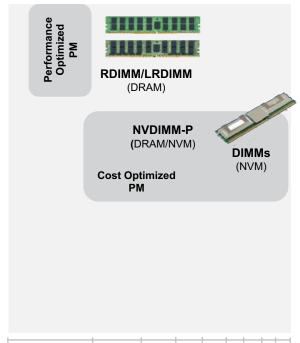
Time

Emerging Technologies

Multiple Persistent Memory technologies are nearing commercialization

- Phase Change (PCM): a middle ground between DRAM and Flash
- MRAM: DRAM replacement? density past 8Gb, lower idle power
- ReRAM: Flash replacement? High density, better endurance
- CNTRAM: Carbon Nanotube based memory another DRAM replacement?

Persistent Memory Technology Overview

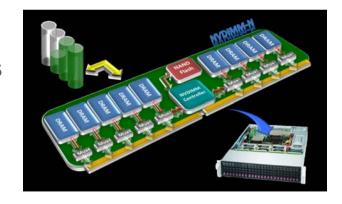

Technology	FRAM	MRAM	ReRAM	PCM	3D XPoint	NRAM	NVDIMIM-N
Density	4K-4Mb	256Mb	TBD	128Mb	128Gb	16Gb	32GB
Endurance	10 ¹²	10 ¹²	10 ⁵	10 ⁸	10 ¹²	10 ¹¹	∞
Writes	Byte	Byte	Byte	Byte	Byte	Byte	Byte
Read Latency	70-100ns	70ns	25ns	20ns	100ns	100ns	40-180ns
Write Latency	70-100ns	70ns	12 μs	65ns	500ns	100ns	40-180ns
Power	Low	Med-Low	Low	Med	Med	Low	High
Interface	DRAM	DDR3 DDR4	Flash-Like	Unique	Unique	DDR4	DDR3 DDR4
Availability	Limited	Prod'n	Alpha	Limited	Samp.	Samp.	Volume

Existing and Emerging Variationsof Persistent Memory Products

NVME SSD (NVM) **NVME SSD** (NAND) SATA/SAS SSD (NAND)

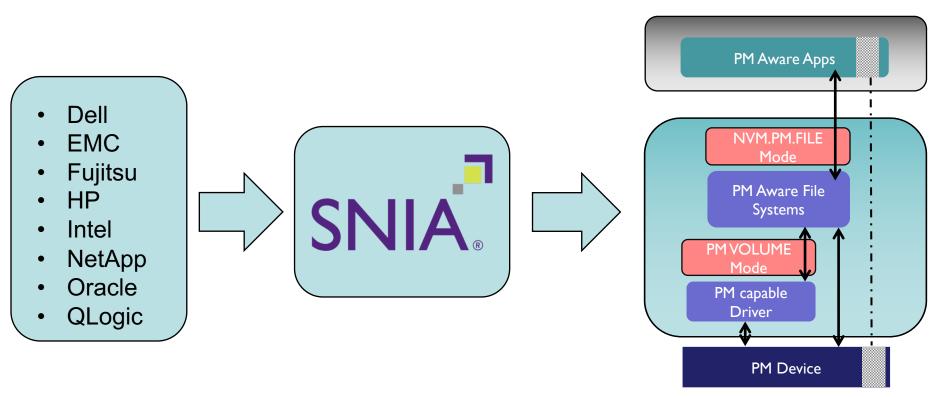
Nanoseconds

Microseconds

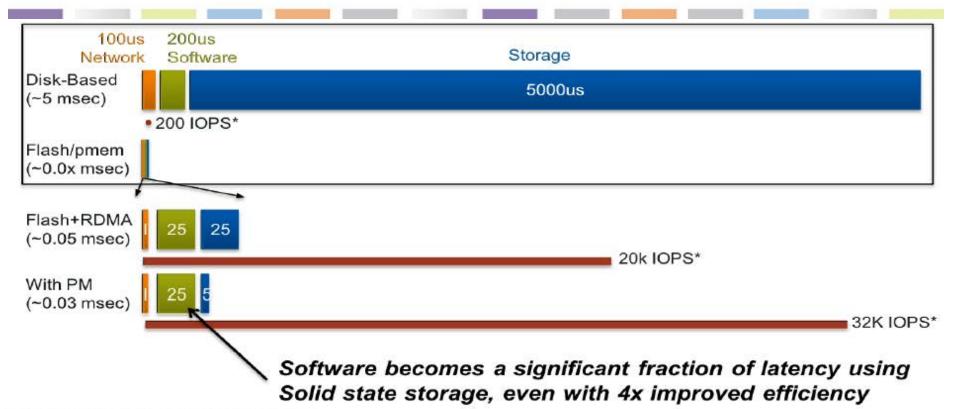

Access Time

Milliseconds

The Role of the NVDIMM-N


- Paves the path for Persistent Memory DIMMs
 - Allows software development today
 - Gets the creative process started
 - Supports segment of PM application needs
- A vehicle to debug PM-based systems
 - Software ready when hardware ships

This Requires Standards!


SNIA NVM Programming Technical Work Group (TWG) Formed 06-11-2012

Persistent Memory – Challenging DRAM and Flash SNIA

^{*} Max potential 1-thread random sector

Operating System Support

- Both Linux and Microsoft joined the SNIA effort to help steer the direction of PM
 - Applications have direct Load/Store access to PM
 - End result: Both OS's are structured almost identically (ex: DAX)
 - No other unique drivers needed
- VMWare has also offered support for PM

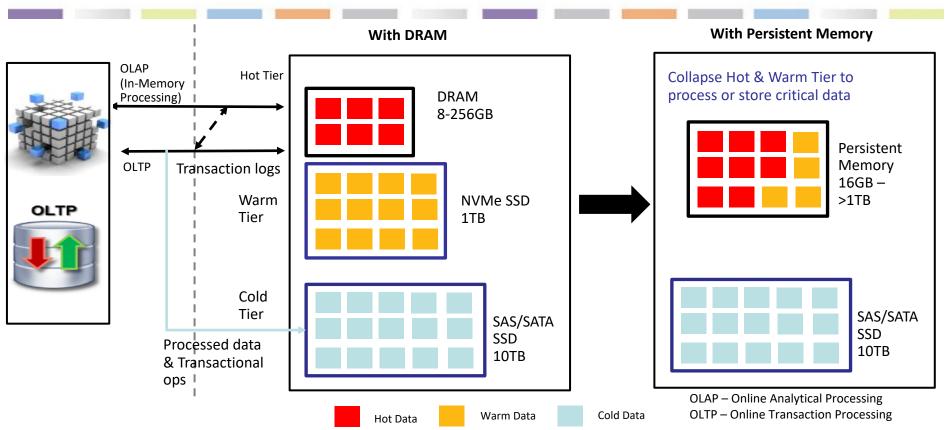
Persistent Memory support in OS's ahead of volume adoption

NVDIMM-N

- NVDIMM-N the first HW available to run PM Applications.
 - Success stories emerge highlighting the application benefits of PM
 - Example: "Tail of Log" for SQL Server
 - Used in man All Flash Arrays
- Alliance formed between JEDEC and SNIA to effectively drive adoption of the technology

NVDIMM-N Prove the Benefits of PM

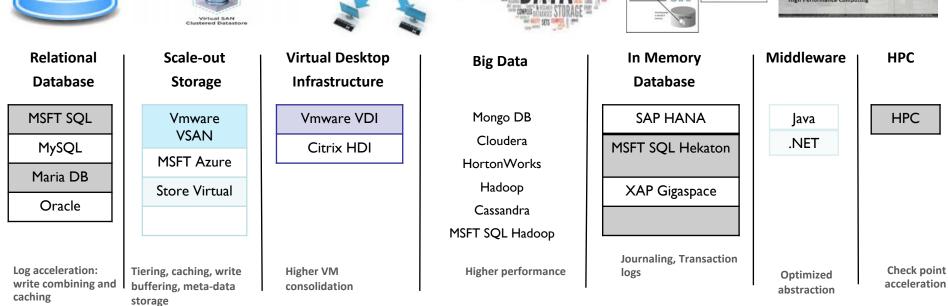
Persistent Memory Applications


What Applications will use PM?

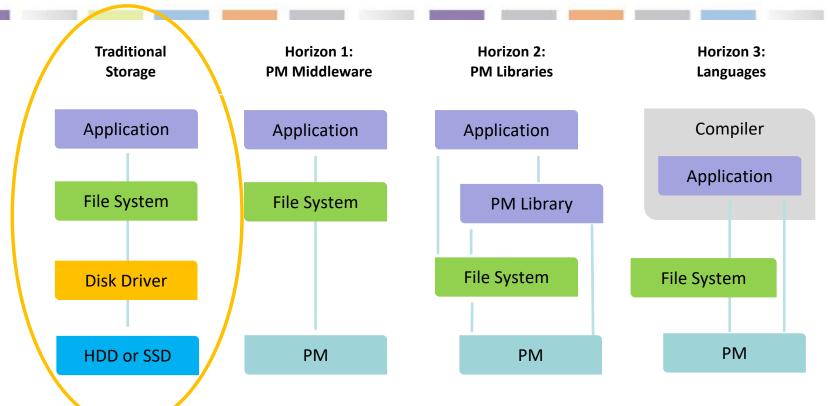
- Applications that have a large working set of data with a need for persistence
 - Using NVMe or standard SSDs add latency
 - Decreasing the latency to avoid disk access
- In Memory Databases
 - Application driven data locality
 - Newer DB adaptations beginning to use PM
- Productivity Improvements
 - Software infrastructure is enabled
 - Standard libraries are available

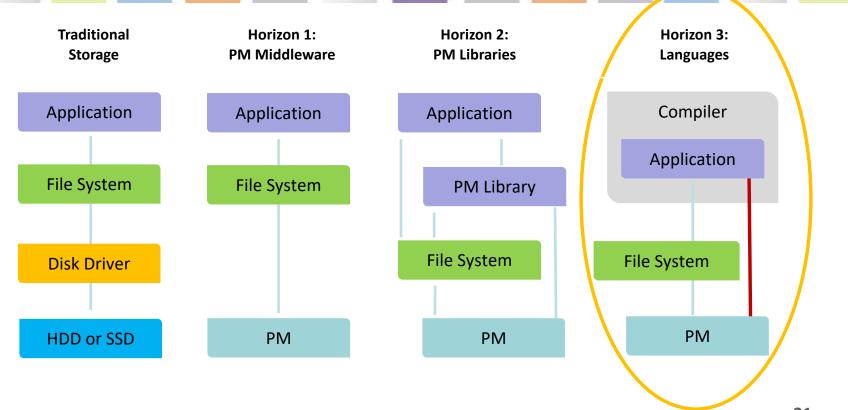
Persistent Memory: Evolution of In-Memory Apps SNIA®

Early PM System Support and Applications



A sample of companies publicly showing PM support


Persistent Memory Adds Value Across Diverse Applications CNIIA


Application Horizons - Today

Application Horizons – Ultimate Goal

NVDIMM-N and 3DXPoint Applications

- Many NAND flash storage array vendors are using NVDIMM-N modules for write acceleration and commit logging
 - These applications do not require a density higher than multiple GBs so they are well-suited for NVDIMM-N
- 3DXPoint is well-suited for PM applications like In-Memory databases that need 100's of GBs to TBs of persistent memory that is used in combination with DRAM

Example: Need for In Memory Persistent Database

DreamWorks

- 600TB's of data in one film
- Many small items in a large working set
- Substantial re-use and repeat file I/O
- Expensive to compute and convert
- Distributed clients doing similar things
- Writes are immutable; lockless updates

Goal with PM

- NVDIMMs in each workstation and server
- Accelerate local workflows
- Cluster of Persistent Memory servers
- Software stack that provides RPM-as-a-Service
- A way for apps to persist things and reduce trips through the storage stack
- A way for apps to find and get things
- That behaves like named shared memory

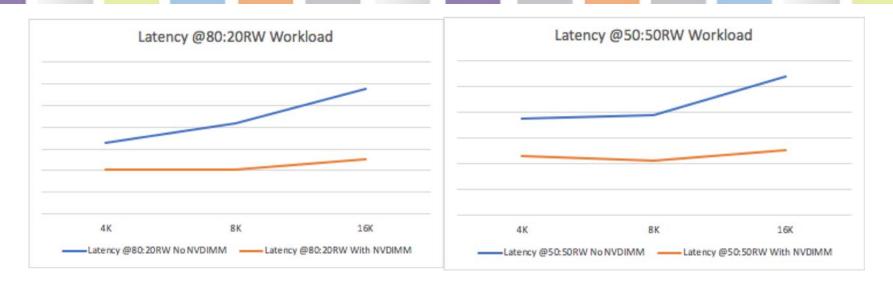
Example: Using Persistent Memory to Accelerate HCI Storage Performance

Differentiated value with Persistent Memory in HCI storage tier

Create a new persistent memory tier for metadata (benefits ALL apps)

- 1. Read-modify-write with persistent memory as byte addressable is 100X faster than block storage
- 2. Faster metadata access for dedup, checksum etc results in reduced CPU utilization and higher IOPS for all apps
- 3. Faster reboots due to persistence of metadata in persistent memory (save time for not having to rebuild metadata from logs)

Example: WDC IntelliFlash Write Cache


Separate logging for incoming writes

- Write is acknowledged after persisting to the write cache
- Coalesced I/O is flushed to drives after dedupe and compression
- Uses high performance media as the latency is crucial for many applications like DBT and OLTP
- Best fit for NVDIMM

Example Results – Latency Comparison

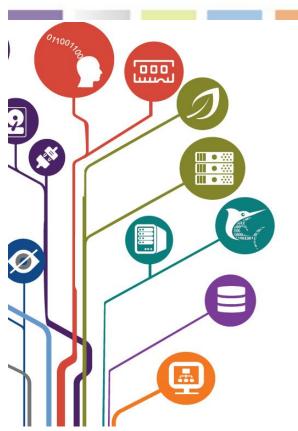
- All flash array with 24TB capacity
- iSCSI protocol
- fig with 4 clients and 8 LUNs

Source: WDC, FMS 2018

SNIA and Alliance Efforts on Persistent Memory

Who is SNIA?

170 industry leading organizations


2,500 active contributing members

50,000 IT end users & storage pros worldwide

What SNIA Does

- Leads the storage industry worldwide in developing and promoting:
 - Standards development and adoption of open source software
 - Interoperability assurance plugfests and conformance testing
 - Technology acceleration SIGs and collaborations
 - Global vendor neutral education –
 certification, webcasts, white papers

SNIA Efforts on Persistent Memory

- SNIA Technical Council & Technical Working Groups (TWGs)
 - Non-Volatile Memory Programming TWG
 - This is the body developing the NVM Programming Model
- SNIA Standards (aka Technical Positions), Software & White Papers
 - NVM Programming Model v1.2 (June 2017) Technical Position
 - PM Remote Access for High Availability v1 (February 2016) –White Paper
 - PM Atomics and Transactions v1r1 (January 2017) White Paper
- SNIA Solid State Storage Initiative (SSSI)
 - One of many Forums and Initiatives within SNIA
 - SSSI sponsors the Persistent Memory and NVDIMM Special Interest Group (SIG)
 - Deliverables: PM Summit, webcasts, videos, presentations, tutorials

JEDEC

- JEDEC standards address architectural, electrical, test, and SPD issues relating to memory design and manufacturing for commercial applications
- JC-45.6 subcommittee:
 - Hybrid Modules
 - This is the subcommittee that governs NVDIMM work
 - Most recent JESD248A DDR4 NVDIMM-N (March 2018)
 - Governs all behavior of module including backup/restore

Persistent Memory and NVDIMM SIG Charter

- To accelerate the awareness and adoption of Persistent Memories and NVDIMMs for computing architectures
- The Persistent Memory and NVDIMM SIG will:
 - Educate on the types, benefits, value, and integration of Persistent Memories
 - Communicate usage of the NVM Programming Model developed to simplify system integration of current and future PM technologies
 - Influence and collaborate with middleware and application vendors to support Persistent Memories
 - Develop user perspective case studies, best practices, and vertical industry requirements
 - Coordinate with industry standards groups and promote industry standards related to PM and NVDIMM
 - Synchronize and communicate a common Persistent Memory taxonomy

Application Development Enabling

- SNIA Persistent Memory Application Enabling
 - A program is being formed to enable the application development community to build Persistent Memory applications
 - · Will launch in early 2019
 - Looking for new members/contributors

Goal: Accelerate Development of PM Applications

Thank You!