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“Science advances one funeral at a time.”
Max Planck

“Randomness is the path of least
presumption.”

Pentti Kanerva
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Machine Learning + Intelligence

Deep Learning Promise
* Has entered the trough of disillusionment

Sequences have become mandatory
* Requires hierarchical temporal capability

Prediction absolutely required

Fast learning required for anomalous conditions

Broad span solution
 Fmbedded Controllers through High-Performance Computing
* Cognitive Database compatibilities
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Deep Leamning Hypgroli)‘i]rxt?s;onal

amphibians

l (HDC)

primates
whale / dolphin

old brain new brain
instincts reasoning
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Old Brain => Deep Learning (ANNs)

Stimulus, Instinct & Response

Low generalization

Good at high probability inference
Requires large amounts of training data

Limited real time processing and incapable of real time
predictive reasoning - brittle failure modes

Autonomous Vehicle developers are rethinking their
technology tracks
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New Brain => Hyperdimensional Computing

Relates human intelligence to the properties of
abstract mathematical spaces

Associates patterns and analogies — What if and
Why?

Single pass training, High Noise Immunity

High range of applicability, from toys to

supercomputers

Can predict probable outcomes
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Artificial Neural Networks adoption of the Deep
Learning algorithm (DL) has limited the development of
algorithms that can deal with generality and the
mapping of associations

DL designs rapidly adopted Parallel Arrays of Multiply-
Accumulate (MAC) solutions using High Bandwidth
Memory (HBM)

Memory is internal to the algorithm used and has no
external object “association” tether

Dependence on a purely statistical algorithm with little

reference to a memory framework is DLs weakest link
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HDC effect is subtle
* Requires overlay of an Cognitive Object Data Base

* Node (Object) and Vector Edge represent either
Hamming Distance SDM or Cosine Overlap in
Hierarchical Temporal SDR to nearest and farthest
relations

* Vector relationships are being incorporated into
Cognitive Object Databases and Probabilistic
Programming Languages
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Pentti Kanerva

i '\ S | _ Redwood Center for Theoretical Neuroscience
- \ R ‘ “Sparse, Distributed Memory”, MIT Press, 1988

SPARSE “Hyperdimensional

DISTRIBUTED  computing: An |
MEMORY. Introduction to Computing

in Distributed

PENTTI KANERVA Representation with High-
' Dimensional

Random Vectors”,

Pentti Kanerva,

January 2009

@

https://redwood.berkeley.edu/
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Jeff Hawkins

Founder: Redwood Center for Theoretical
Neuroscience (2002), CEO Numenta (2005)

“On Intelligence, How a New
Understanding of the Brain Will
Lead to the Creation of Truly
Intelligent Machines, 2004”

MACHINES

: https://numenta.com/

INTELLIGENCE
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Pentti Kanerva
ik m— e Research Affiliate at
the Redwood Neuroscience
Institute
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Bruno Olaufson

Professor Helen Wills
Neuroscience Institute

Director and Cofounder,
Redwood Center for Theoretical
Neuroscience and Advisor to
Vicarious Al

Dileep George
Cofounder Vicarious Al
Cofounder and CTO
Numenta

Jeff Hawkins

Cofounder of Numenta,
Redwood Center for Theoretical
~ Neuroscience (2005) and
Redwood Neuroscience
| Institute (2002)
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Dileep George, CTO and
Cofounder of Vicarious Al

Scott Phoenix, CEO
And Cofounder of
Vicarious Al
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Moore's law
Memory wall
Heat wall

(1) Better memory storage
(2) Bioinspired computing

WebFeet

(3) In-memory computing In-Memory
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New computation models Tailored architectures

Neurons Synapses

Statistical Communication

Hyperdimensional

Intrinsic device properties
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Memory processing unit, can perform different
tasks, data, storage, arithmetic, logic and
neuromorphic computing using the same
physical fabric that is programmable at the
finest grain, the individual device level, without
the need to move data outside the fabric.

In-M
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Application

Letters/Image features/ > Input
Phonemes //iRNA motifs...,

Projected into Hyperdimensional Space

o 7 [ .

,ko‘\ 10110010010.....101010011110

011101010101.....011101010100 ..... "Representation
€—Hyper-Dimensional xectors 1-K ~ 10K bits™>
A
v

MAP Kernels
Multiplication — Addition - Permutation — Computation
) v1®v2, sum(v1, v2,...), sum(v1), perm(v1)
/ % /‘ﬂnference
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Associative
Motor/Sensory

Hypervector Memory
Input < 10Kb Encoder ~ LOKDHV Processor
Preprocessor

< 47TB

Hamming Distance
(difference between
Hypervectors)

» HV Address space (219,000 = 1,9950631168807583848837421626 e+3010)
» Associative Memory Processor Training + Experiential < 4TB
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Leverage unique structure & properties of VRRAM
MAP kernels: demonstrated on 4-layer 3D VRRAMSs

In-memory HD computing enabled in 3D architecture

Multiplication Addition Permutation
In-Memory
WebFeet 19 [inféei =

eeeeeeeeeeeeeeeeeeeeeeeee



I ey ey FR

DDR4 Functionality

Low latency
CL<13.5|5ns

Higher Density

Roadmaps
8- 32| 4 Layers

WebFeet
Research

Persistence
10 years | 300 years

Endurance
10'2| 105 PE

Zero Refresh

(or very low overhead) | None

In-Memory
20 EComputlng

NNNNN
AAAAAAA

SUMMIT 20



/ LRI AR RS

General and scalable model of computing with a well-defined
set of arithmetic operations

« Fast and one-shot learning
« Auditable (explainability) opens entirely new segment opportunities

Training sets reduced by orders of magnitude while still
maintaining classification accuracy

A memory-centric architecture with significantly parallelizable
operations

Extremely robust against most failure mechanisms and noise
Predictive Analytics with high accuracy easily incorporated

Associative Base technology for the Cognitive Software
Pyramid
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RRAM as
associative memory

& CNFET variations gradual reset

ml0 (Language O, location 0)
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ck2  Time Encoding of Sentences

Hamming distance

Readout current:
clk3 cIkI4 ? Hamming distance
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ISSCC 2018 / SESSION 31 / COMPUTATION IN MEMORY FOR MACHINE LEARNING / 31.3
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PULP-HD: Accelerating Brain-Inspired High-Dimensional Computing on a Parallel Ultra-Low Power Platform
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4-core platform (1.5mm2, 2 mW)

WebFeet 23 [ﬂ'&%%"&ﬁ% o
Research

SUMMIT 2o
Research | Vision | Knowledge



Hyperdimensional Computing

Assoclative Processor = NVDIMM-X Form Factor

WebFeet
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The Kanerva Partition (Database [nierseect)
/ﬂmnM@M@ry Hypothetical System ﬂmpll@mcsm@ifli@m

NVDIMM-A
NVDIMM-N/P
DDR4 DIMM
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In-Memory Database (Analytic Grouping)
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The Kanerva Partition

(RT-PA Grouping) \
/ In=ﬁ\\//ﬂ@m©ﬂy Hyperdimensional Associative Processor (Hypothetical) : \
HDAP-DIMM F/F
NVDIMM-N/P
DDR4 DIMM
Intel|®

In-Memory Database (Predictive Analytic Grouping)
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Next Up:
‘Big Problems for Nervous Tissue | \
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