
In-Memory Techniques
Low-Latency Trading

Kevin A. Goldstein R.

2

Kevin Goldstein

• Live in NYC
• +18 years on Wall St.
• Extensive low latency development for market makers, LL trading

shops, Banks…
• Extensive performance tuning for distributed trading applications
-Head G2 architecture Hedgefund Management System
-Head of dev USA at FlowTraders

• Sr. Solutions Architect at Neeve Research
• Frequent speaker at Industry Events
- (10/25 NYC IMC Meetup)
- (11/14 NYC IMC Meetup HTAP)

3

Agenda

• Introduce trading systems
• Top concerns for trading systems
• IMC applied to trading systems
• Q & A

4

Trading System at a Glance:

Pre-Trade Risk

Positions

Post-trade

Hedger

P&L Calc

Best Ex.

Pricing Engine

LOPER

Config engine

OATS

Pricing engine

Arbitrage engine

Drop copier
Trade reconciliator

5

Order router

Basic Order Manager

Client-IN Market-OUT

Market-INClient-OUT

6

Top Three Requirements for Trading
Systems

Performance
-Low 5-20 microseconds

Consistency
-Perform the same with 10K mps as with 100K mps
-1mic std deviation for I2E

Reliability
-Message Reliability
-Survive process and machine failure

Co
m
pl
ex
ity

Pr
io
rit
y

OR

Ingress Egress

7

IMC Applied to Data Management for Performance

BEFORE:

Data

Compute

Data

Transactions

Does not Scale

Does not Perform

Complex to Author

Store

Query

Process

Capture, Refine

Choke point

Complex queries

Multiple queries

Very large volumes of
data required

Complex components

8

Memory Latency

L1 Cache ~1ns

L2 Cache ~3ns

L3 Cache ~12ns

Remote NUMA Node ~40ns

Main Memory ~100ns

Random SSD Read 4K 150μs

Data Center Read 500μs*

Mechanical Disk Seek 10ms

Non Starters For Performance
We’re Talking About!

Sources: https://gist.github.com/jboner/2841832
http://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html

All State in Memory All The Time!

MEMORY ORIENTED COMPUTING!

IMC Applied to Data Management for Performance

9

Ownership

Publication

Consumption How do you
consume the data
in the most
efficient manner
possibly

Data
gravity

Responsible for
updating any
consumers

IMC Applied to Data Management for Performance

10

Function
(Stateful)

Data

Data
(In-Motion)

Refine (aggregate, transform)
and route data in motion

Transactions

Store full data in-memory.

Function co-located with its
private state.

Capture Data from Source

Store

Process

Capture, Refine, Route

Capture, Refine

Data at rest

Data in
motion

AFTER

IMC Applied to Data Management for Performance

11

Mkt data

Algo [A-M]

Algo [N-Z]

OR [A-M]

OR [N-Z]’

OR [A-M]’

OR [N-Z]

Ref Data (A)
Owner Publishes

Data Ownership – when things change, I’m responsible for
updating registered clients

à No pull for reference data

• Reduce the amount of
noise to deal with

• Opens the door for
efficient HA

• Much smaller
memory foot print

• faster access times &
smaller machines

IM Applied for Reliability

12
OR-[N-Z]

OR-[A-M]

OR-
QQQ,NVDA

OR-
AAPL

OR-
GOOG

OR-
AMZN

OR-
AMZN

OR-
GOOG

OR-
AAPL

OR-
QQQ,NVDA

OR-[A-M]

OR-[N-Z]

High volum
e

groups

Low
 volum

e
groups

Benefits:
• Symbology

flexibility

• Hardware risk

• Scaling
flexibilit

IM Applied for Reliability, Performance
and Consistency

Primary OR’s Backup OR’s

13

IM Applied for Performance

AVOID GC

• Pooling is the way to go
• Leverage Off-heap memory
• Actively manage live objects
• Warmups are key

CPU is bound to memory
cleanup

14

Warmups & POOLING
Warmups are a must:

Not warmed up

warmed up

15

IM Benefits We Capitalize On

üMessage Driven
üStateful
üMulti-Agent
üZero Garbage

üZero Loss
üFully Fault Tolerant
üHorizontally Scalable
üUltra Performance

15

Questions?

kevin@neeveresearch.com @neeveresearch
@kevgol0

www.neeveresearch.com

mailto:kevin@neeveresearch.com

