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• Layer in front of the mainframes
• Serves many applications
• Caches data to shield mainframe from parallel concurrent load
• Big cluster own by different teams: multitenant

Original use case: ShieldING
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• In-Memory Computing shows promising features
• Resilient
• Performant
• Scalable
• High availability
• Consistency

• Ignite showed some limitations
• Service grid present many issues
• Update of a service imposes a full restart of the grid
• Issues with services lifecycle

• Multi-tenancy complexities
• Configuration is propagated on all nodes
• missing/incompatible classes might result on impossibility to start the node

Investing in Ignite
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ING’s Think Forward strategy



Define requirements for an application
Come up with a design
Introduce changes in the requirements

Scenario
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• User can get list of accounts and their balances

• User can get a list of transactions of an account

• User can initiate a debit from an account
• Debit currency has to be identical to account currency
• Debit amount has to be lower or equal to account balance

• Focus on backend
• Expose REST API
• Simple application (no authorisation/authentication)

Payment application
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• Vanilla Ignite server nodes 
• Ignite Native persistent store

• Springboot based REST server
• Springboot server starts an Ignite client node

• Stable server node topology
• Allows scaling of the API layer independently 

of the data/compute layer
• Ignite cluster can be seen as datastore
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Architecture

Ignite cluster
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Server node Server node Server node



• Maintenance of the data store
• Done via simple Java application connecting 

via an Ignite Client node
• Create caches
• Create/update indexes

8

Creating Ignite caches

Ignite cluster

Java 
application

Client 
node

Server node Server node Server node



Customer cache
• PARTITIONED
• Backup: 1

Account cache
• PARTITIONED
• Backup: 1
• Transactional
• Index on Owner Id
• Index on AccountNumber

Transaction cache
• PARTITIONED
• Backup: 1
• Transactional
• Index on AccountId
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Model
Customer
ID: String
Firstname: String
Lastname: String

Account
ID: String
Owner ID: String
AccountNumber: String
Currency: String
Balance: BigDecimal
Type: AccountType
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*

Transaction
Id: String
Account Id: String
DebitAccountNumber: String
CreditAccountNumber: String
Currency: String
Amount: BigDecimal
Communication: String
ReceivedTime: LocalDateTime
Type: TransactionType

1

*



Co-locationNo co-location
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Data affinity co-location
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Execute the code along with the data

Transaction cache

Client

Affinity execution
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Result

See talk from Valentin Kulichenko (Gridgain) from IMC Summit EU 2018: 
https://www.imcsummit.org/2018/eu/session/want-extreme-performance-scale-do-distributed-right-way

https://www.imcsummit.org/2018/eu/session/want-extreme-performance-scale-do-distributed-right-way


• Do not deploy business nor model classes on Ignite server nodes

• Any client can connect, no classpath/version/dependency conflict

• Only works with BinaryObjects (see https://apacheignite.readme.io/docs/binary-marshaller )

• Puts de-serialisation on the client application

Working  with BinaryObject
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public static Account fromBinary(BinaryObject binaryAccount) {
String id = binaryAccount.field("id");
String accountNumber = binaryAccount.field("accountNumber");
String currency = binaryAccount.field("currency");
BigDecimal balance = binaryAccount.field("balance");
String ownerId = binaryAccount.field("ownerId");
BinaryEnumObjectImpl  type = binaryAccount.field("type");
AccountType accountType = AccountType.values()[type.enumOrdinal()];
return new Account(id, accountNumber, currency, balance, ownerId, accountType);

}

https://apacheignite.readme.io/docs/binary-marshaller


• Ignite cluster
• No dependency except ignite jars
• Starts nodes

• API server
• Springboot based application
• Exposes REST endpoints
• Uses a client node to connect to the cluster

• Maintenance client
• Simple java application
• Uses a client node to connect to the cluster

Demo code (a)
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• Users can choose to receive an alert when account balance goes under a given amount
• Limit amount must be > 0

• When a debit is received, if the resulting amount is below the alert amount, an alert is sent to the 
customer

Create a new cache for outgoing alerts

Add a new field on the Customer: contact details

Add a new field on the Account: alertAmount

Let’s accept new requirements
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• Keep ignite cluster up and running
• No restart of server nodes: no rebalancing management

• Use the migration client to create the new Alert cache
• Validation of the transaction is done on Ignite server with a compute task
• Start a different API server
• In the service to update the limit amount, we also ask for the contact details
• Customers who use this service will be represented by a different model
• Existing applications will be able to continue reading the data
• New applications need to deal with customers that are migrated yet

Application evolution
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Alert cache
• PARTITIONED
• Backup: 1

New field on Customer: 
ContactDetails: String

New field on Account: 
Limit: BigDecimal
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Application evolution

Alert
ID: String
Destination: String
Message: String
CreationTime: LocalDateTime



Keep existing running

• Second API server
• Copy of the first one with modifications for the new requirements

Demo code (b)
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• No need to restart the cluster to update the application
• Have multiple clients with different concerns
• Used co-location for best performance

What we achieved
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Using binary objects and class-less design we managed to 
solve the issues we had encountered



• Only application owner of the data should modify the data
• Mainly works with Ignite native persistence
• More effort to work with BinaryObjects
• Does not work with Ignite Queues or Topics
• Once a cache is created, query fields are fixed (Schema-on-write vs Schema-on-read)

Solution limitations
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