
Exploring the Potential of Ignite Using Classless Design

David Follen
ING



• Layer in front of the mainframes
• Serves many applications
• Caches data to shield mainframe from parallel concurrent load
• Big cluster own by different teams: multitenant

Original use case: ShieldING

2

Mainframe Mainframe Mainframe

Shielding

Client Client Client Client

Ignite services calls

TCP or via Tibco

Cluster group Cluster groupCluster group



• In-Memory Computing shows promising features
• Resilient
• Performant
• Scalable
• High availability
• Consistency

• Ignite showed some limitations
• Service grid present many issues
• Update of a service imposes a full restart of the grid
• Issues with services lifecycle

• Multi-tenancy complexities
• Configuration is propagated on all nodes
• missing/incompatible classes might result on impossibility to start the node

Investing in Ignite

3



4

ING’s Think Forward strategy



Define requirements for an application
Come up with a design
Introduce changes in the requirements

Scenario

5



• User can get list of accounts and their balances

• User can get a list of transactions of an account

• User can initiate a debit from an account
• Debit currency has to be identical to account currency
• Debit amount has to be lower or equal to account balance

• Focus on backend
• Expose REST API
• Simple application (no authorisation/authentication)

Payment application

6



• Vanilla Ignite server nodes 
• Ignite Native persistent store

• Springboot based REST server
• Springboot server starts an Ignite client node

• Stable server node topology
• Allows scaling of the API layer independently 

of the data/compute layer
• Ignite cluster can be seen as datastore

7

Architecture

Ignite cluster

Client 
node

Server node Server node Server node



• Maintenance of the data store
• Done via simple Java application connecting 

via an Ignite Client node
• Create caches
• Create/update indexes

8

Creating Ignite caches

Ignite cluster

Java 
application

Client 
node

Server node Server node Server node



Customer cache
• PARTITIONED
• Backup: 1

Account cache
• PARTITIONED
• Backup: 1
• Transactional
• Index on Owner Id
• Index on AccountNumber

Transaction cache
• PARTITIONED
• Backup: 1
• Transactional
• Index on AccountId

9

Model
Customer
ID: String
Firstname: String
Lastname: String

Account
ID: String
Owner ID: String
AccountNumber: String
Currency: String
Balance: BigDecimal
Type: AccountType

1

*

Transaction
Id: String
Account Id: String
DebitAccountNumber: String
CreditAccountNumber: String
Currency: String
Amount: BigDecimal
Communication: String
ReceivedTime: LocalDateTime
Type: TransactionType

1

*



Co-locationNo co-location

10

Data affinity co-location

Server Node 1

Account cache

A1 A6

Transaction cache

A6T3 A5T2 A6T1

Server Node 2

Account cache

A3 A4 A7

Transaction cache

A1T3 A7T2 A3T2

Server Node 3

Account cache

A2 A5 A8

Transaction cache

A1T2 A3T1 A4T2

A1

A4T3 A1T1 A4T1

A5T1 A6T2
A1T2

A1T1

A1T3

Transaction cache

Server Node 1

Account cache

A1 A6

Transaction cache

A6T3

A5T2

A6T1

Server Node 2

Account cache

A3 A4 A7

Transaction cache

A1T3 A7T2 A3T2

Server Node 3

Account cache

A2 A5 A8

A1T2 A3T1 A4T2

A1

A4T3
A1T1 A4T1

A5T1

A6T2 A1T2 A1T1
A1T3



Execute the code along with the data

Transaction cache

Client

Affinity execution

11

Server Node 1

Account cache

A1 A6

Transaction cache

A6T3 A5T2A6T1

Server Node 2

Account cache

A3 A4 A7

Transaction cache

A1T3 A7T2 A3T2

Server Node 3

Account cache

A2 A5 A8

A1T2 A3T1 A4T2

A4T3

A1T1 A4T1

A5T1

A6T2

Calculate the average 
transaction amount for 
transactions of account A1Compute

A1T3

A1T2 A1T1

Result

See talk from Valentin Kulichenko (Gridgain) from IMC Summit EU 2018: 
https://www.imcsummit.org/2018/eu/session/want-extreme-performance-scale-do-distributed-right-way

https://www.imcsummit.org/2018/eu/session/want-extreme-performance-scale-do-distributed-right-way


• Do not deploy business nor model classes on Ignite server nodes

• Any client can connect, no classpath/version/dependency conflict

• Only works with BinaryObjects (see https://apacheignite.readme.io/docs/binary-marshaller )

• Puts de-serialisation on the client application

Working  with BinaryObject

12

public static Account fromBinary(BinaryObject binaryAccount) {
String id = binaryAccount.field("id");
String accountNumber = binaryAccount.field("accountNumber");
String currency = binaryAccount.field("currency");
BigDecimal balance = binaryAccount.field("balance");
String ownerId = binaryAccount.field("ownerId");
BinaryEnumObjectImpl  type = binaryAccount.field("type");
AccountType accountType = AccountType.values()[type.enumOrdinal()];
return new Account(id, accountNumber, currency, balance, ownerId, accountType);

}

https://apacheignite.readme.io/docs/binary-marshaller


• Ignite cluster
• No dependency except ignite jars
• Starts nodes

• API server
• Springboot based application
• Exposes REST endpoints
• Uses a client node to connect to the cluster

• Maintenance client
• Simple java application
• Uses a client node to connect to the cluster

Demo code (a)

13



• Users can choose to receive an alert when account balance goes under a given amount
• Limit amount must be > 0

• When a debit is received, if the resulting amount is below the alert amount, an alert is sent to the 
customer

Create a new cache for outgoing alerts

Add a new field on the Customer: contact details

Add a new field on the Account: alertAmount

Let’s accept new requirements

14



• Keep ignite cluster up and running
• No restart of server nodes: no rebalancing management

• Use the migration client to create the new Alert cache
• Validation of the transaction is done on Ignite server with a compute task
• Start a different API server
• In the service to update the limit amount, we also ask for the contact details
• Customers who use this service will be represented by a different model
• Existing applications will be able to continue reading the data
• New applications need to deal with customers that are migrated yet

Application evolution

15



Alert cache
• PARTITIONED
• Backup: 1

New field on Customer: 
ContactDetails: String

New field on Account: 
Limit: BigDecimal

16

Application evolution

Alert
ID: String
Destination: String
Message: String
CreationTime: LocalDateTime



Keep existing running

• Second API server
• Copy of the first one with modifications for the new requirements

Demo code (b)

17



• No need to restart the cluster to update the application
• Have multiple clients with different concerns
• Used co-location for best performance

What we achieved

18

Using binary objects and class-less design we managed to 
solve the issues we had encountered



• Only application owner of the data should modify the data
• Mainly works with Ignite native persistence
• More effort to work with BinaryObjects
• Does not work with Ignite Queues or Topics
• Once a cache is created, query fields are fixed (Schema-on-write vs Schema-on-read)

Solution limitations

19



ing.be/jobs david.follen@ing.comhttps://www.linkedin.com/company/ing/
https://www.linkedin.com/in/david-follen/


