

In-Memory Performance Durability of Disk

Scalable Machine and Deep Learning with Apache Ignite

Denis Magda Apache Ignite PMC Chair GridGain Director of Product Management

Agenda

- Why Machine Learning at Scale?
- Ignite Machine Learning
- Genetic Algorithms
- TensorFlow Integration
- Demo
- Q&A

Why Machine Learning at Scale?

- 1. Models trained and deployed in different systems
 - Move data out for training
 - Wait for training to complete
 - Redeploy models in production
- 2. Scalability
 - Data exceed capacity of single server
 - Burden for developers

Memory-Centric Storage

Off-heap Removes noticeable GC pauses

Stores Superset of Data

Machine Learning

© 2018 GridGain Systems, Inc.

GridGain Company Confidential

Record to Node Mapping

Server Node

Caches and Partitions

K7,V7

K9, V9

Partition 2

Partition-Based Dataset

P = PartitionC = Partition ContextD = Partition Data $D^* = Local ETL$

Algorithms and Applicability

	Classification	Reg
Description	Identify to which category a new observation belongs, on the basis of a training set of data	Modeling the between a sc variable y and explanatory v
Applicability	spam detection, image recognition, credit scoring, disease identification	drug respons supermarket
Algorithms	nearest neighbor, decision tree classification, neural network	linear regress tree regressic neighbor, neu

ression

e relationship calar dependent d one or more variables x

se, stock prices, revenue

sion, decision on, nearest eural network

Algorithms and Applicability

	Clustering	Prepre
Description	Grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups	Feature extra normalization
Applicability	customer segmentation, grouping experiment outcomes, grouping shopping items	transform inp text, for use v learning algo
Algorithms	k-means	Normalizatio

ocessing

action and n

out data, such as with machine prithms

n preprocessor

Linear Regression

- Ordinary Least Squares
- Linear Regression Trainer
 - QR Decomposition
 - Gradient Descent

// y = bx + a LinearRegressionModel model = trainer.train(trainSet); double prediction = model.predict(sampleObject);

// Prepare trainSet

• •

// QR Decomposition LinearRegressionQRTrainer trainer = new LinearRegressionQRTrainer(); LinearRegressionModel mdl = trainer.train(trainSet);

// Gradient Descent LinearRegressionSGDTrainer trainer = new LinearRegressionSGDTrainer(1000, 1e-6); LinearRegressionModel mdl = trainer.train(trainSet);

Decision Trees

- Data stored by features
- Related data on same node
- Features
 - Continuous
 - Categorical

// Train the model DecisionTreeModel mdl = trainer.train(new BiIndexedCacheColumnDecisionTreeTrainerInput(cache, new HashMap<>(), ptsCnt, featCnt));

// Estimate the model on the test set IgniteTriFunction<Model<Vector, Double>, Stream<IgniteBiTuple<Vector, Double>>, Function<Double, Double>, Double> mse = Estimators.errorsPercentage();

Double accuracy = mse.apply(mdl, testMnistStream.map(v -> new IgniteBiTuple<>(v.viewPart(0, featCnt), v.getX(featCnt))), Function.identity());

System.out.println(">>> Errs percentage: " + accuracy);

Demo: Fraud Detection

Genetic Algorithms

TensorFlow Integration: Benefits

Ignite as distributed data source

- Perfect fit for distributed TF training
- Less ETL
 - TF nodes deployed together with Ignite nodes
 - In-machine data movement only
- TF tasks execution in-place in Ignite
 - Roadmap

TensorFlow

TensorFlow Integration: Main Features

- Distribution of user tasks written in Python
- Automatic creation and maintenance of TF cluster
- Minimization of ETL costs
- Fault tolerance for both Ignite and TF instances

TensorFlow

Demo: TensorFlow and Ignite

Summary: Apache Ignite Benefits

- Massive scalability
 - Horizontal + Vertical
 - RAM + Disk
- Zero-ETL
 - Train models and run algorithms in place
- Fault tolerance and continuous learning
 - Partition-based dataset

Resources

- Apache Ignite ML Documentation: — https://apacheignite.readme.io/docs
- ML Blogging Series:
 - Genetic Algorithms with Apache Ignite
 - Introduction to Machine Learning with Apache Ignite
 - <u>Using Linear Regression with Apache Ignite</u>
 - Using k-NN Classification with Apache Ignite
 - Using K-Means Clustering with Apache Ignite
 - <u>Using Apache Ignite's Machine Learning for Fraud Detection at</u> <u>Scale</u>

Signite Among Top 5 Apache Projects **Over 1M downloads per year**

Top 5 Developer Mailing Lists

- 1. Ignite 🖠
- Kafka 2.
- 3. Tomcat
- Beam 4.
- 5. James

Top 5 User Mailing Lists

- Lucene/Solr 1.
- Ignite 💲 2.
- Flink 3.
- Kafka 4.
- 5. Cassandra

Top 5 by Commits

- Hadoop
- Ambari
- Camel 3.
- lgnite 💲 4.
- 5. Beam

Apache Ignite – We're Hiring ;)

- Very Active Community
- Great Way to Learn Distributed Computing
- How To Contribute:
 - <u>https://ignite.apache.org/</u>

Any Questions?

Thank you for joining us. Follow the conversation. <u>http://ignite.apache.org</u>

@Apachelgnite@gridgain@denismagda

