

Real-Time with AI The Convergence of Big Data and AI

Colin MacNaughton Neeve Research

INTRODUCTIONS

• Based here in Silicon Valley

- Creators of the X Platform[™]- Memory Oriented Application Platform
- Passionate about high performance computing for mission critical enterprises

- MACHINE LEARNING: BIG DATA -> BETTER FEATURES
- PRODUCTIONIZING BIG DATA IN REAL TIME
- USE CASE: REAL TIME FRAUD DETECTION

BIG DATA AND MACHINE LEARNING

Big Data and Machine Learning go Hand in Hand

Training

• Deep Learning has risen to the fore recently, and it is data hungry! When looking to make accurate predictions we need large data sets to train and test our models.

In Production (real-time)

- The more data (features) we can access and aggregate in real time to feed as inputs to our models, the more accurate our predictive output will be.
- This is an HTAP/HOAP problem: can we assemble this data at scale while it is also being updated?
- Because models need to evolve continuously, loosely coupled (micro service) architectures are a good choice, but at the risk of needing to move a lot of data around.

TYPES OF APPLICATIONS

- Financial Trading
- IoT Event Processors
- Credit Card Processors
- E-Commerce
 - Personalization Engines
 - Value Based Pricing
- Ad Exchanges

NEEVE RESEARCH

MACHINE LEARNING WORKFLOW

FEATURE SELECTION

It's all about the data ...but what data?

- Which pieces of data serve as the best predictors of what we are looking to answer?
- Can I get an accurate (enough) result just from the data in the request a user sent?

FEATURE SELECTION

• If not can more data help?

BIG DATA AND BETTER FEATURES

Can Big Data in Real Time help us leverage more meaningful features?

- How much better are our predictive models if they can leverage features based on relevant historical/topical data on a transaction by transaction basis?
- Can we assemble such data within a meaningful time frame in production?
- Can we concurrently collect more data that we expect will be useful?

FEATURE SELECTION

8

BIG DATA AND BETTER FEATURES

Example – Credit Card Fraud Detection

Feature	Big Data Enhanced Feature
Amount	Skew from median purchase, Amount charged in last hour.
Merchant	# of Prior Purchases by user
Location	Distance from last purchase? Distance from home(s)? Purchased from this location in the past?
Time	Last Purchase Time?

BIG DATA AND BETTER FEATURES

Example – Personalization

Feature	Big Data Enhanced Feature
Time	Seasonal Interests / Habits every year Jane goes snowshoeing in March.
Search Terms / Key words	Past Interests / Behavior
Location	 The last time John was in Paris, he was interested in John's calendar says he'll be in Paris next September. XYZ is happening here now (or in the future).
Demographics	What are peers clicking on now?

10

MACHINE LEARNING IN PRODUCTION

Performance and Scale – Lots of data needed in real time

- Can I assemble the normalized feature data needed to feed my model in real time?
- Can I produce results fast enough that the prediction still matters?

Agility – Rapid Change: Models must evolve over time and so must the system feeding data to it.

- Fail Fast Ability to rapidly test and discard what doesn't work.
- A/B testing
- Zero down time deployment, easy deployment to test environments.

High Availability

• No interruptions across Process, Machine or Data Center failure.

Business Logic

- ML isn't the answer to every problem, can your compute/data infrastructure handle traditional analytics and ML?
- Cyber Threats duping the model.

PRODUCTION

PLAN FOR (Evolving) SCALE – COMPUTE + Data + HA

Can you assemble the feature vectors needed to feed your model at scale?

 Not with the above ... Update Contention between threads / instances prevents the ability to do big data reads.

NEEVE RESEARCH

12

PLAN FOR (Evolving) SCALE – COMPUTE + Data + HA

PRODUCTION

13

PLAN FOR (Evolving) SCALE – MICRO SERVICES

Benefits

Reduce Risk -> Increased Agility

NEEVE RESEARCH

- Cost Effective -> Provision to hardware by granular service needs.
- Resiliency -> Single service failure doesn't bring down the entire system.

PLAN FOR (Evolving) SCALE – MICRO SERVICES

Data to aggregate across lots of disparate Microservices?

NEEVE RESEARCH

Parallel Fetch (Fork/Join)

choice of messaging
 provider matters, but
 modern providers can
 handle it.

PRODUCTION

15

PLAN FOR (Evolving) SCALE – DATA EVOLUTION

What Happens when Services are Updated?

NEEVE RESEARCH

- Older versions of services should still function when new fields added.
- Efficiency of Encoding Matters!
- Impedance mismatch between State/Message encoding?
- Organization-wide agreed upon "Rules of Engagement"

PRODUCTION

DON'T FORGET PLAIN OLD BUSINESS LOGIC

Traditional Analytics are Still Important!

- Not all analytics are best solved with ML ... be judicious.
- Deep Neural Networks are a Black Box...

NEEVE RESEARCH

 ... so when possible traditional rules/analytics should complement ML, along with robust monitoring.

Example: Adversarial Inputs

An unmodified image of panda (left), when mixed with a finely tuned "perburbation" (center), makes Als thin it's a gibbon (right).

Image: OpenAl/Google Brain

PLAN WORKFLOW FOR REFINEMENT

Plan for measuring and monitoring ML efficacy

- Behavior changes over time
- Models will need to evolve.

Getting data out

EEVE RESEARCH

- Consider infrastructural / security implications of exposing production data for refinement training of models.
- Continuous training workflows?

18

THE X PLATFORM

THE X PLATFORM

The X Platform is a memory oriented platform for building *multi-agent, transactional* applications.

Collocated Data + Business Logic = Full Promise of In-Memory Computing

State as Java State in Local Memory Ultra Performance Zero Garbage Fully Fault Tolerant Zero Loss Horizontally Scalable

HA + SCALE ON THE X PLATFORM

NEEVE RESEARCH

WHAT DOES THIS MEAN FOR ML + BIG DATA IN REAL TIME?

Business Logic and Feature Vector Prep

AGILITY

- Micro Service Architecture
- Trivial evolution of message + data models

NEEVE RESEARCH

HA

- Memory-Memory Replication (Zero Down Time)
- Exactly Once Delivery across failures (Zero Duplication/Loss)

Getting Data Out...

USE CASE - REAL TIME FRAUD DETECTION

Receive CC Authorization Request

- Identify Card Holder
- Identify Merchant
- Perform Fraud Checks using
 - CC Holder Specific Information
 - Transaction History

Send CC Authorization Response

Reference Data Aggregation

Hybrid Rule Based Analytics + Machine Learning

Flow

FRAUD DETECTION WITH THE X PLATFORM + TENSOR FLOW

50k Credit Cards / Instance17.5m Transactions / Shard100k Merchants / Shard

1.2ms median Authorization Time (36.4 ms max)

Full Scan of two year's worth of transactions per card <u>on each</u> <u>authorization</u> to feed ML

Performance Summary for 2 Partitions

200k Merchants 100k Credit Cards 35 million Transactions TensorFlow (no GPU) 2 Partitions, Full HA 7500k auth/sec Auth Response Time = ~ 1.2 ms

HAVE A LOOK FOR YOURSELF

Check Out the Source

https://github.com/neeveresearch/nvx-apps

Getting Started Guide

https://docs.neeveresearch.com

Get in Touch

contact@neeveresearch.com

