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“Most Popular Database on AWS” – Sumo Logic 
2016 Survey
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Redis Top Differentiators

Simplicity Extensibility Performance
NoSQL Benchmark
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Redis Data Structures

2 3

Redis Modules
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Performance: The Most Powerful Database

Highest Throughput at Lowest Latency 
in High Volume of Writes Scenario

Least Servers Needed to 
Deliver 1 Million Writes/Sec

Benchmarks performed by Avalon Consulting Group Benchmarks published in the Google blog
5
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6“REDIS IS FULL OF DATA STRUCTURES!”

2 Simplicity: Data Structures - Redis’ Building Blocks
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Simplicity: Redis Data Structures – ’Legos’

Lists
[ A → B → C → D → E ]

Hashes
{ A: “foo”, B: “bar”, C: “baz”  }

Bitmaps
0011010101100111001010

Strings
"I'm a Plain Text String!”

Bit field
{23334}{112345569}{766538}

Key

7

2

”Retrieve the e-mail address of the user with the highest 
bid in an auction that started on July 24th at 11:00pm PST” ZREVRANGE 07242015_2300 0 0=

Streams
à{id1=time1.seq1(A:“xyz”, B:“cdf”), 

d2=time2.seq2(D:“abc”, )}à

Hyperloglog
00110101 11001110

Sorted Sets
{ A: 0.1, B: 0.3, C: 100 }

Sets
{  A , B , C , D , E  }

Geospatial Indexes
{ A: (51.5, 0.12), B: (32.1, 34.7) }
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• RediSearch

• Redis-ML

• Redis Graph

• ReJSON

• Rebloom

• Neural-Redis

• Redis-Cell

• Redis-TDigest

• Redis-Timerseries

Extensibility: Modules Extend Redis Functionality
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• Redis-Rating

• Redis-Cuckoofilter

• Cthulhu

• Redis Snowflake

• redis-roaring

• Session Gate

• ReDe

• TopK

• countminsketch



Microservices
Click to add text
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SOA vs. Microservices



11

Microservices at Netflix



Monolith or Microservices?
Click to add text
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Benefits of Microservices

13

• Microservices are hot. It seems like everyone is using them
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Benefits of Microservices

• Make it perform faster or scale better 
• Extend an application’s capabilities more easily 
• Add new features more quickly and easily
• Improve maintainability
• Reduce vulnerabilities 
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But, Microservices are Complicated

15

• A lot more going on that meets the eye.
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Be Prepared for Success

• What to do when your app begins to hockey stick 
• Duck tape the parts when they break? 
• Do you rewrite your app with scalability in mind?

16
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You Can Do Both with Redis & Kubernetes

• Redis became famous by solving web scale data problems
• Remember the Twitter Fail Whale?

• Kubernetes became famous by solving hockey stick problem
• Remember Pokemon Go?

17
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And Scale with Redis and Microservices

• In many cases, Monolith is the right way to start
• Smaller apps and small teams don’t need the overhead and 

unnecessary complexity of Microservices Architecture
• But when its time to scale, use Redis and Microservices

18



Use Cases
Click to add text
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Use Cases

Top 4

• Cache

• Session Store

• Metering

• Fast Data Ingest

More:
•Primary Database
•Real-time Analytics
•Messaging
•Recommendations
•High-speed Transactions
•Search – RediSearch
•Geo Spatial Indexing
•Many more …
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1. Redis as a Cache

21

When to use

• Frequent reads, infrequent writes

• Data is shared between user sessions

Examples:

• Pictures, documents, videos, statements, 
reports, etc.

Look-aside cache

Write-through cache
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2. Redis as a Session Store
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When to use

Session based apps with frequent 
reads and writes

Data is isolated between sessions

Examples:

e-Commerce, gaming, social 
applications, etc. 
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In a simple world

Internet Server Database
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Good problems

Internet Server Database

Traffic Grows… Struggles
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Good solution

Internet Server Database

performance restored

Session storage 
on the server
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More good problems

Internet Server Database

Session storage 
on the server

Struggling
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Problematic Solutions

Internet Server Database

Session storage 
on the server

Load balanced

Session storage 
on the server
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Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server #1 – Hello Robin!
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Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server #3 – Hello ????



30

Better solution

Internet Server Database

Load balanced

Redis
Session Storage
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Use Redis Hash For Session Store

userid 8754

name dave

ip 10:20:104:31

hits 1

lastpage home

hash key: usersession:1

HMSET usersession:1 userid 8754 name dave ip 10:20:104:31 hits 1  
HMGET usersession:1 userid name ip hits
HINCRBY usersession:1 hits 1

HSET usersession:1 lastpage “home”
HGET usersession:1 lastpage
HDEL usersession:1 lastpage

Hashes store a mapping of keys to values – like a dictionary or associative array – but faster

DEL usersession:1
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Use Case: Rate-limiting 

Limit the peak load on your legacy database by 
limiting the number of queries per second to 
the highest threshold

How Redis helps you?

•Built-in counters

•Time-to-live

•Single-threaded architecture assures 
serializability

3. Redis for Metering

32
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Use Cases:

•Real-time analytics

•IoT

•Log collection, time-series 

How Redis helps you?

•Pub/Sub

•List

•Sorted Set

4. Redis for Fast Data Ingest

33
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Do more with Redis

34

• Caching

• Session Store

• Metering

• Fast Data Ingest

It’s a Swiss Army Knife for data processing

• Primary Database

• Real-time Analytics

• Messaging

• Recommendations

• High-speed Transactions

• Search – RediSearch

• Geo Spatial Indexing



Managing Leaderboards w/ Redis 
Sorted Sets

Click to add text
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Leaderboard with Sorted Sets Example

The Problem

• MANY users playing a game 
or collecting points

• Display real-time leaderboard. 
• Who is your nearest 

competition
• Disk-based DB is too slow

Why Redis Rocks

• Sorted Sets are perfect!
• Automatically keeps list of 

users sorted by score  
• ZADD to add/update
• ZRANGE, ZREVRANGE to get 

user
• ZRANK will get any users 

rank instantaneously
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Redis Sorted Sets

ZADD game:1 10000 id:1 
ZADD game:1 21000 id:2
ZADD game:1 34000 id:3 
ZADD game:1 35000 id:4
ZADD game:1 44000 id:3

or 
ZINCRBY game:1 10000 id:3

34000 id:3
35000 id:4

21000 id:2

10000 id:1

ZREVRANGE game:1 0 0
ZREVRANGE game:1 0 1 WITHSCORES

44000 id:3

+ 10000id:3



Redis Streams
Click to add text
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Redis Streams

• 1st class Redis citizens

• An abstract data type that is not unlike a log

• Designed with time series data in mind

• Provide some "Kafkaesque" messaging abilities
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Why invent yet another Redis thingamajig?

Necessity is the mother of invention

There ain't no such thing as a free lunch

The existing (i.e. lists, sorted sets, PubSub) isn't "good enough" for things 
like:

• Log-like data patterns 
• At-least-once messaging with fan-out 
And listpacks, radix trees & reading Kafka :) 
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The Log is hardly a new thing

A storage abstraction that is: 
• Append-only, can be truncated 
• A sequence of records ordered by time
A Logical Log is: 
• Based on a logical offset, i.e. time (vs. bytes) 
• Therefore time range queries 
• Made up of in-memory data structures, naturally
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Logging streams of semi-structured data

A data stream is a sequence of elements. Consider: 
• Real time sensor readings, e.g. particle colliders 
• IoT, e.g. the irrigation of avocado groves 
• User activity in an application 
…

• Messages in distributed systems 



43

A side note about Distributed Systems

“A distributed system in which components located on networked 

computers communicate and coordinate their actions by passing 

messages” – Distributed Computing, Wikipedia

Includes: client-server, 3/n-tier, peer to peer, SOA, micro- & nanoservices, 

FaaS & serverless...
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An observation

There are only two hard problems in distributed systems:

2.  Exactly-once delivery

1. Guaranteed order of messages 

2. Exactly-once delivery

- Mathias Verraes, on Twitter 
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Refresher on message delivery semantics

Fact #1: you can choose one and only one: 
•At-most-once delivery, i.e. "shoot and forget" 
•At-least-once delivery, i.e. explicit ack 
Fact #2: exactly-once delivery doesn't exist 
Observation: order is usually important (duh)
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This isn’t exactly a new challenge

Consider the non-exhaustive list at taskqueues.com

• 17 message brokers, including: Apache Kafka, NATS, RabbitMQ and 
Redis

• 17 queue solutions, including: Celery, Kue, Laravel, Sidekiq, Resque
and RQ <- all these use Redis as their backend btw ;)

And that’s without considering protocol-based etc.
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So again, why "reinvent hot water"?

Redis (in general and) Streams (in particular) are:

• Everywhere, from the IoT's edge to the cloud

• Blazing fast, massive throughput

• Usable from all(most) languages and platforms

(IoT microcontrollers included)

Note: apropos IoT, they are great async buffers 
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Redis Streams “formalism”

A stream is a sequence of entries (records). It: 
• Is "sharded" by key ("topic") 
• Has 1+ producers 
• Has 0+ consumers 
• Can provide at-most- or at-least-once semantics 
• Enables stream processing/real time pipelines  (as opposed to batch)
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A picture of a stream
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Entries in the Stream

Every entry has a unique ID that is its logical offset. The ID is in following format:

<epoch-milliseconds>-<sequence>

Note: each ID part is a 64-bit unsigned integer

An entry also has one or more ordered field-value pairs, allowing for total 
abstraction (the empty string is a valid field name, good for time series).
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Adding Entries
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Iterating
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Blocking Read
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Multi
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The problem with scaling consumers

A consumer of a stream gets all entries in order, and will eventually 
become a bottleneck.

Possible workarounds:

• Add a "type" field to each record - that's dumb

• Shard the stream to multiple keys - meh

• Have the consumer dispatch entries as jobs in queues … GOTO 10
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Consumer Groups

” … allow multiple consumers to cooperate in processing messages 
arriving in a stream, so that each consumers in a given group takes a 
subset of the messages. “

Shifts the complexity of recovering from consumer failures and group 
management to the Redis server
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Group orientation

We are here :) 
• Groups are named and are explicitly (!) created: 

XGROUP CREATE temps agg $ 
• Consumers are also named, and each gets only a subset of the stream:

XREAD-GROUP GROUP agg CONSUMER escher-01 STREAMS temps >  
• XACK/NOACK in XREAD, XCLAIM, XPENDING
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Redis Streams status 

• Expected to be GA within a month or so (est. Oct 2018)



59

Try it yourself

From your browser: https://try.redis.io
Or download it: https://redis.io/download 
Or clone it: https://github.com/antirez/redis
Or dockerize it: docker run -it redis
Or try Redis Enterprise by https://redislabs.com
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Questions

Dave Nielsen
dave@redislabs.com
@davenielsen

mailto:dave@redislabs.com

