In-Memory
| njComputing e,

SUMMITI20s

Redis Streams, Functions and Data
Structures

Dave Nielsen
Redis Labs

About Redis

Use Cases

Redis Streams

In-Memory
2 | Nl Computing |yorm

SUMMIT 20

“Most Popular Database on AWS” — Sumo Logix:
/201 5 Survey BN

» RDBMS
Database Adoption by Type and Vendor B NosaL

Redis 18.22%

My S QL | 16.59%

Mongo | 15.65%
PostgreS QL | ——

Cassandra : 8.06%
Dynamo 5.49%

Redshift [4.79%
Memcached [4.21%
Microsoft SQL o 4.09%
Oracle
Riak
Couchbase
Hive
Hbase
Sybase
DB2
Other

In-Memory
In|Computing o,

SUMMITI20s

Redis Top Differentiators

Performance
NoSQL Benchmark

redislabs

Couchbase cassandra pATAsTAx EEREEGS

-
1l

Simplicity

Redis Data Structures

Bit field Geospatial Indexes

il el

Extensibility

Redis Modules

S B

4

li]

Icr:i-Mem?_ry
ompu |ng NNNNN
SUMMIT 26

1 Performance: The Most Powerful Database

Highest Throughput at Lowest Latency Least Servers Needed to
in High Volume of Writes Scenario Deliver 1 Million Writes/Sec

40k| 394.42 381.31 372.31 500 g 350
?) - 4

g O —-O— 00 2 £ 300
w 30k f=D 3

s a S 250
g fo 4
+ 20k Z <
— ©

E 200 e 150
) (4] -]

S 10k g 5 100
a 100 2 »

2 g e %0

0 0 & 0

Couchbase Cassandra Datastax Redis® Cassandra Couchbase Redis®
—O~ Application Latency (msec) ANNUAL COST $2,226,216 $371,040 $14,832
COST COMPARED 150X 25X
TOREDIS®
i . . In-Memor
Benchmarks performed by Avalon Consulting Group Benchmarks published in the Google blog 5 IInICompuﬁng NoRTH
SUMMITI20s

2 Simplicity Data Structures - Redis’ Building Blocks
i \

MISSION STATUS.

D, IT"S FULL

“REDIS IS FULL OF DATA STRUCTURES!” i 5755

Redis Data Structures — ’Legos’
\

Strings
“I'm a Plain Text String!”

Bit field Geospatial Indexes
{23334}{112345569}{766538} {A:(51.5,0.12), B: (32.1,34.7) }

Hashes
{ A: “foo”, B: “bar”, C: “baz” }

Lists Streams

2>{id1=timel.seql(A:“xyz”, B:“cdf”),
d2=time2.seq2(D:“abc”,)}=>

In-Memory
— y In Computing | rorr
ﬁ —_ SUMMI T 208

[A>B>C->D->E]

3 Extensibility: Modules Extend Redis Functionality

RediSearch
Redis-ML
Redis Graph
ReJSON
Rebloom
Neural-Redis
Redis-Cell

Redis-TDigest

*fRedis-Timerseries

Redis-Rating
Redis-Cuckoofilter
Cthulhu

Redis Snowflake
redis-roaring
Session Gate
ReDe

TopK

countminsketch

0 ’

8

li]

\

In-Memory
Computing | norm

SUMMITI20s

AMERICA

Microservices

Click to add text

In-Memory
| N | Computing | wer,

SUMMI T2

g
3
g

SOA vs. Microservices

Microservices at Netflix

In-Memory
11 I N | Computing | om

SUMMIT 208

Monolith or Microservices?

Click to add text

Benefits of Microservices

13 I I(r:i-Mem?_ry
ompu |ng NORTH
Dn SUMMIT 26

>
1l

Benefits of Microservices

* Make it perform faster or scale better

* Extend an application’s capabilities more easily
* Add new features more quickly and easily

* Improve maintainability

* Reduce vulnerabilities

But, Microservices are Complicated

* A lot more going on that meets the eye.

2052018 5 Gono s B ’ R 5‘1&;;‘2’ e : R D “;"'fﬁ. ;;E,— i
R T s s =
MONOLITHICAL VS MICROSERVICES . S 08) -i- e
= L n > - = A - S
R e s &
" Qs _e‘ T IT T 3 A e, » e L..i T \
S 5 %58 e N e R e Y
: g . g A Sty e 15
 c— ' g, T | S S e e 2 o S e "
; Lot T B AN s e e) GG
lg‘ | Y 7 Jﬁ—f s & g e .‘__'_ ,.55'7" :L__‘ “&“" -
: 075 T O S : e
L2 i // \\ £ 3 D - o, vy AR, & B o
—t i = =3 L = £ £ — £
@ : =2 25 " Gt aan 8 .. -
' m T i S
Sowrce: Martin Fowler blog

In-Memory
15 | N | Computing i

SUMMITI2

Be Prepared for Success

* What to do when your app begins to hockey stick
* Duck tape the parts when they break?
* Do you rewrite your app with scalability in mind?

40 | Response Time
sales = k
T 30 |
g 25 F
=
2 20 P
g
15
2
(1 10 P
5 SLA
1F /
10 50 100 200 500 1000 2000
—> time Number of users

ompu |ng NORTH
n SUMMIT 206

You Can Do Both with Redis & Kubernetes

/

* Redis became famous by solving web scale data problems
* Remember the Twitter Fail Whale?

* Kubernetes became famous by solving hockey stick problem
* Remember Pokemon Go?

Failed to get game data from

Twitter is over capacity.

In-Memory
17 | N | Computing yemm

SUMMITI20s

-
1l

And Scale with Redis and Microservices

* In many cases, Monolith is the right way to start

* Smaller apps and small teams don’t need the overhead and
unnecessary complexity of Microservices Architecture

 But when its time to scale, use Redis and Microservices

450+ microservices 500+ microservices 500+ microservices

o= o NETFLIX

In-Memory
18 In | Computing em,

SUMMITI20s

Use Cases

Click to add text

In-Memory
| N | Computing | wer,

SUMMI T2

Use Cases

Top 4

« Cache

¢ Session Store
* Metering

« Fast Data Ingest

More:

*Primary Database
*Real-time Analytics
Messaging
Recommendations
*High-speed Transactions
*Search — RediSearch
*Geo Spatial Indexing
Many more ...

20

m

In-Memory
Computing | norm
SUMMI Tl20s

1. Redis as a Cache

DATA WRITTEN TO STORAGE

T READ FROM CACHE

>
>

MISSING DATA FETCHED FROM
THE SOURCE AND CACHED

Look-aside cache

DATA WRITTEN TO CACHE AND STORAGE

!

<
<

T I READ FROM CACHE

MISSING DATA FETCHED FROM
THE SOURCE AND CACHED

Write-through cache

When to use

* Frequent reads, infrequent writes

* Datais shared between user sessions

Examples:

* Pictures, documents, videos, statements,
reports, etc.

: LA!\'/IERICAN
=" Microsoft STAPLES E

In-Memory
21 I N | Computing | om

SUMMITI20s

2. Redis as a Session Store

When to use

Session based apps with frequent
reads and writes

Data is isolated between sessions
’ SESSION START: LOAD SESSION DATA
) % Examples:
SA\?EE?SEIS%TJOENNSATA \g\JASTf\S;’E?\g:AND WRITTEN e_CO m m e rcel ga m I ngl SOCIa I
TO THE SESSION STORE appllCatlonS, etc
[] []
\— INTUIT T
verizon
In-Memory
o 22 ||n|°°mpuf'"9 yomm
rn — SUMMI Tl20

In a simple world

-—
[o]

Internet Server Database

In-Memory
23 | N Computing |roem

SUMMITI20s

Good problems

Internet Server Database

Traffic Grows... Struggles

In-Memory
24 In | Computing em,

SUMMITI20s

Good solution

—-—
[o]

performance restored

Internet Server Database

Session storage
on the server

In-Memory
25 | N Computing |roem

SUMMITI20s

More good problems

Struggling
Internet Server Database

Session storage
on the server

In-Memory
26 | N Computing |roem

SUMMITI20s

Problematic Solutions

Load balanced

Internet Server Database

Session storage
on the server

In-Memory
27 I N | Computing | om

SUMMITI20s

Multiple Servers + On-server Sessions?

' Server #1 — Hello Robin!

—

Robin

Server Database

28 I E\-Mem?ry
omputing | nor
Dn SUMMIT 206

Multiple Servers + On-server Sessions?

Robin

Server #3 — Hello ??7??

\

Server

Database

29

n-Memor

In-M y
In (o) utin NORTE

Better solution

Redis
Session Storage

&

Load balanced

—
~——_

Internet Server Database

In-Memory
30 | N Computing |roem

SUMMITI20s

Use Redis Hash For Session Store

hash key: usersession:1

userid 8754 HMSET usersession:1 userid 8754 name dave ip 10:20:104:31 hits 1
name dave HMGET usersession:1 userid name ip hits

ip 10:20:104:31 . .

- ; HINCRBY usersession:1 hits 1

lastpage home

HSET usersession:1 lastpage “home”
HGET usersession:1 lastpage
HDEL usersession:1 lastpage

DEL usersession:1

Hashes store a mapping of keys to values — like a dictionary or associative array — but faster

In-Memory
31 |n Computing | worm

SUMMI T2

3. Redis for Metering

Use Case: Rate-limiting

Limit the peak load on your legacy database by
limiting the number of queries per second to
the highest threshold

How Redis helps you?
*Built-in counters
*Time-to-live

*Single-threaded architecture assures
serializability

O |
¥ twitt m PL~BCX | ¥ Twatter / Error < |
|
‘ Uh-oh! You're being rate-limited! ;
~
¢ F
ocations where many people share the same IP address (eg
ons 3

) and conferences), our rate imits may be too stnct. If

ou believe you are using Twitter search normally, please let

In-Memory
32 | N | Computing | yorr

SUMMITI20s

4. Redis for Fast Data Ingest

Use Cases:
*Real-time analytics
°loT

*Log collection, time-series

‘/“\ “‘ “\“‘ ‘“\“\“\ﬁ\%\\h\ﬂ\\\m‘ o

How Redis helps you? s ‘“‘“‘“;‘;‘:‘;\“sxx::::;zfw
OV E 100

*Pub/Sub

eList

*Sorted Set

etermax fISEIV. \Yermram

In-Memory
33 In|Computing o,

SUMMITI20s

Do more with Redis

Caching
Session Store
Metering

Fast Data Ingest

Primary Database
Real-time Analytics
Messaging
Recommendations
High-speed Transactions
Search — RediSearch

Geo Spatial Indexing

It’s a Swiss Army Knife for data processing

In-Memory
34 | N | Computing | rom

NORTH
SUMMIT 206

Managing Leaderboards w/ Redis
Sorted Sets

Click to add text

Leaderboard with Sorted Sets Example

The Problem Why Redis Rocks

* Sorted Sets are perfect!

 Automatically keeps list of
users sorted by score

* Display real-time leaderboard. « ZADD to add/update

e \Who iIs your nearest * /ZRANGE, ZREVRANGE to get
competition user

 ZRANK will get any users
rank instantaneously

36 I E\-Mem?ry
omputing | NorTH
Dn SUMMIT 206

« MANY users playing a game
or collecting points

 Disk-based DB is too slow

Redis Sorted Sets

<«———— 44000 id:3

A

ZADD game:1 10000 id:1
ZADD game:1 21000 id:2
ZADD game:1 34000 id:3
35000id:4 _, ZADD game:1 35000 id:4
34000id:3 d:3 +10000 ZADD game:1 44000 id:3
or

—— ZINCRBY game:1 10000 id:3

21000id:2

/REVRANGE game:100

Z/REVRANGE game:1 0 1 WITHSCORES

10000 id:1

In-Memory
37 |n Computing | worm

SUMMI T2

Redis Streams

Click to add text

In-Memory
| N | Computing | wer,

SUMMI T2

Redis Streams

* 1st class Redis citizens
* An abstract data type that is not unlike a log
* Designed with time series data in mind

* Provide some "Kaftkaesque" messaging abilities

In-Memory
39 | N | Computing |yorr:

SUMMIT 20

Why invent yet another Redis thingamajiq?

Necessity is the mother of invention
There ain't no such thing as a free lunch

The existing (i.e. lists, sorted sets, PubSub) isn't "good enough” for things
like:

* Log-like data patterns

* At-least-once messaging with fan-out
And listpacks, radix trees & reading Kafka :)

o [in]

In-Memory
Computing | norm
SUMMI Tl20s

The Log is hardly a new thing

A storage abstraction that is:

* Append-only, can be truncated

* A sequence of records ordered by time

A Logical Log Is:

« Based on a logical offset, i.e. time (vs. bytes)

* Therefore time range queries

« Made up of in-memory data structures, naturally

In-Memory

41 Computing | norm
Dln SUMMIT 206

Logging streams of semi-structured data

\

A data stream is a sequence of elements. Consider:
 Real time sensor readings, e.g. particle colliders

* loT, e.g. the irrigation of avocado groves
« User activity in an application

* Messages in distributed systems

In-Memory

42 Computing | norm
Dln SUMMIT 206

A side note about Distributed Systems

“A distributed system in which components located on networked
computers communicate and coordinate their actions by passing
messages” — Distributed Computing, Wikipedia

Includes: client-server, 3/n-tier, peer to peer, SOA, micro- & nanoservices,
FaaS & serverless...

In-Memory

43 Computing | noerx
Dln SUMMIT 206

An observation

There are only two hard problems in distributed systems:
2. Exactly-once delivery

1. Guaranteed order of messages

2. Exactly-once delivery

- Mathias Verraes, on Twitter

In-Memory

44 Computing | norm
Dln SUMMIT 206

Refresher on message delivery semantics
\

Fact #1: you can choose one and only one:
*At-most-once delivery, i.e. "shoot and forget"
*At-least-once delivery, i.e. explicit ack

Fact #2: exactly-once delivery doesn't exist

Observation: order is usually important (duh)

In-Memory
45 | Nl Computing |yorm

SUMMIT 20

This isn’t exactly a new challenge

Consider the non-exhaustive list at taskqueues.com

* 17 message brokers, including: Apache Kafka, NATS, RabbitMQ and
Redis

* 17 queue solutions, including: Celery, Kue, Laravel, Sidekiq, Resque
and RQ <- all these use Redis as their backend btw ;)

And that's without considering protocol-based etc.

In-Memory

46 Computing | noerx
Dln SUMMIT 206

So again, why "reinvent hot water”?

Redis (in general and) Streams (in particular) are:
* Everywhere, from the loT's edge to the cloud

* Blazing fast, massive throughput

« Usable from all(most) languages and platforms
(loT microcontrollers included)

Note: apropos loT, they are great async buffers

In-Memory
47 | Nl Computing |yorm

SUMMIT 20

Redis Streams “formalism”

A stream is a sequence of entries (records). It:

Is "sharded" by key ("topic")

Has 1+ producers

Has 0+ consumers

Can provide at-most- or at-least-once semantics

Enables stream processing/real time pipelines (as opposed to batch)

48

m

In-Memory
Computing | norm
SUMMI Tl20s

A picture of a stream

Producer

Consumer 2 § Next entry E
position i ("*") g

Consumer 1
position

In-Memory
49 | Nl Computing |yorm

SUMMIT 20

Entries in the Stream

Every entry has a unique ID that is its logical offset. The ID is in following format:
<epoch-milliseconds>-<sequence>
Note: each ID part is a 64-bit unsigned integer

An entry also has one or more ordered field-value pairs, allowing for total
abstraction (the empty string is a valid field name, good for time series).

In-Memory
50 | N | Computing |yorr:

SUMMIT 20

Adding Entries

Adding entries

redis> XADD <key> <* | id>
[MAXLEN [~] <n>]
<field> <value> [...]

<epoch-milliseconds>-<sequence>

Stream length
redis> XLEN <key>
(integer) <stream-length>

In-Memory
51 In Computlng MERICA

SUMMIT 20

Iterating

Iterating
redis> X[REV]RANGE <key>
<start> <stop>
[COUNT <n>]
1) 1) <entry-id>
2) 1) <fieldl>
2) <valuel>
3

In-Memory
52 In Computlng MERICA

SUMMIT 20

Blocking Read

[Blocking] read

redis> XREAD [BLOCK <milliseconds>]
STREAMS <key> [...]

<start> [...]

1) 1) <entry-id>

2) 1) <fieldl>

2) <valuel>

Sl

M y
I n O utin NORT:—!

Mult)

And the usual Redis goodness, e.g. TX
redis> MULTI

Or server-side processing
redis> EVAL "return 'Lua Rocks!'"™ @

Or your own custom module

redis> MODULE LOAD <your-module-here>
(0] 4

In-Memory
54 I n Compu“ng MERICA

SUMMIT 20

The problem with scaling consumers

A consumer of a stream gets all entries in order, and will eventually
become a bottleneck.

Possible workarounds:
* Add a "type" field to each record - that's dumb
* Shard the stream to multiple keys - meh

* Have the consumer dispatch entries as jobs in queues ... GOTO 10

In-Memory

55 I IComputing NNNNN
In SUMMIT 206

Consumer Groups

" ... allow multiple consumers to cooperate in processing messages
arriving in a stream, so that each consumers in a given group takes a
subset of the messages. “

Shifts the complexity of recovering from consumer failures and group
management to the Redis server

In-Memory
56 | N | Computing |yorr:

SUMMIT 20

Group orientation

We are here :)

Groups are named and are explicitly (!) created:

XGROUP CREATE temps agg $
Consumers are also named, and each gets only a subset of the stream:

XREAD-GROUP GROUP agg CONSUMER escher-01 STREAMS temps >
XACK/NOACK in XREAD, XCLAIM, XPENDING

In-Memory
57 |n Computing | worm

SUMMIT 20

Redis Streams status

« Expected to be GA within a month or so (est. Oct 2018)

In-Memory

58 I IComputing NNNNN
In SUMMIT 206

Try it yourself

From your browser: https://try.redis.io

Or download it: https://redis.io/download

Or clone it: https://github.com/antirez/redis

Or dockerize it: docker run -it redis

Or try Redis Enterprise by https://redislabs.com

In-Memory
59 | N | Computing |yorr:

SUMMIT 20

Questions

Dave Nielsen

@davenielsen

In-Memory
60 | N | Computing |yorr:

SUMMIT 20

mailto:dave@redislabs.com

