
Redis Streams, Functions and Data
Structures

Dave Nielsen
Redis Labs

2

Agenda

About Redis

Use Cases

Redis Streams

3

“Most Popular Database on AWS” – Sumo Logic
2016 Survey

3

4

Redis Top Differentiators

Simplicity Extensibility Performance
NoSQL Benchmark

1

Redis Data Structures

2 3

Redis Modules

4

Lists

Hashes

Bitmaps

Strings

Bit field

Streams

Hyperloglog

Sorted Sets

Sets

Geospatial Indexes

5

Performance: The Most Powerful Database

Highest Throughput at Lowest Latency
in High Volume of Writes Scenario

Least Servers Needed to
Deliver 1 Million Writes/Sec

Benchmarks performed by Avalon Consulting Group Benchmarks published in the Google blog
5

1

Se
rv

er
s u

se
d

to
 a

ch
ie

ve
 1

M
 w

rit
es

/s
ec

10k

20k

30k

40k

0

100

200

300

400

500

0
Couchbase Cassandra Datastax Redise

394.42 381.31 372.31

71.22A
pp

lic
at

io
n

re
qu

es
ts

/s
ec

Latency in M
illiseconds

Applica!on Latency (msec)

CouchbaseCassandra Redise

$14,832$371,040$2,226,216

25X150X

ANNUAL COST

COST COMPARED
TO REDISe

350

300

250

200

150

100

50

0

6“REDIS IS FULL OF DATA STRUCTURES!”

2 Simplicity: Data Structures - Redis’ Building Blocks

7

Simplicity: Redis Data Structures – ’Legos’

Lists
[A → B → C → D → E]

Hashes
{ A: “foo”, B: “bar”, C: “baz” }

Bitmaps
0011010101100111001010

Strings
"I'm a Plain Text String!”

Bit field
{23334}{112345569}{766538}

Key

7

2

”Retrieve the e-mail address of the user with the highest
bid in an auction that started on July 24th at 11:00pm PST” ZREVRANGE 07242015_2300 0 0=

Streams
à{id1=time1.seq1(A:“xyz”, B:“cdf”),

d2=time2.seq2(D:“abc”,)}à

Hyperloglog
00110101 11001110

Sorted Sets
{ A: 0.1, B: 0.3, C: 100 }

Sets
{ A , B , C , D , E }

Geospatial Indexes
{ A: (51.5, 0.12), B: (32.1, 34.7) }

8

• RediSearch

• Redis-ML

• Redis Graph

• ReJSON

• Rebloom

• Neural-Redis

• Redis-Cell

• Redis-TDigest

• Redis-Timerseries

Extensibility: Modules Extend Redis Functionality

8

3

• Redis-Rating

• Redis-Cuckoofilter

• Cthulhu

• Redis Snowflake

• redis-roaring

• Session Gate

• ReDe

• TopK

• countminsketch

Microservices
Click to add text

10

SOA vs. Microservices

11

Microservices at Netflix

Monolith or Microservices?
Click to add text

13

Benefits of Microservices

13

• Microservices are hot. It seems like everyone is using them

14

Benefits of Microservices

• Make it perform faster or scale better
• Extend an application’s capabilities more easily
• Add new features more quickly and easily
• Improve maintainability
• Reduce vulnerabilities

14

15

But, Microservices are Complicated

15

• A lot more going on that meets the eye.

16

Be Prepared for Success

• What to do when your app begins to hockey stick
• Duck tape the parts when they break?
• Do you rewrite your app with scalability in mind?

16

17

You Can Do Both with Redis & Kubernetes

• Redis became famous by solving web scale data problems
• Remember the Twitter Fail Whale?

• Kubernetes became famous by solving hockey stick problem
• Remember Pokemon Go?

17

18

And Scale with Redis and Microservices

• In many cases, Monolith is the right way to start
• Smaller apps and small teams don’t need the overhead and

unnecessary complexity of Microservices Architecture
• But when its time to scale, use Redis and Microservices

18

Use Cases
Click to add text

20

Use Cases

Top 4

• Cache

• Session Store

• Metering

• Fast Data Ingest

More:
•Primary Database
•Real-time Analytics
•Messaging
•Recommendations
•High-speed Transactions
•Search – RediSearch
•Geo Spatial Indexing
•Many more …

21

1. Redis as a Cache

21

When to use

• Frequent reads, infrequent writes

• Data is shared between user sessions

Examples:

• Pictures, documents, videos, statements,
reports, etc.

Look-aside cache

Write-through cache

22

2. Redis as a Session Store

22

When to use

Session based apps with frequent
reads and writes

Data is isolated between sessions

Examples:

e-Commerce, gaming, social
applications, etc.

23

In a simple world

Internet Server Database

24

Good problems

Internet Server Database

Traffic Grows… Struggles

25

Good solution

Internet Server Database

performance restored

Session storage
on the server

26

More good problems

Internet Server Database

Session storage
on the server

Struggling

27

Problematic Solutions

Internet Server Database

Session storage
on the server

Load balanced

Session storage
on the server

28

Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server #1 – Hello Robin!

29

Multiple Servers + On-server Sessions?

Server DatabaseRobin

Server #3 – Hello ????

30

Better solution

Internet Server Database

Load balanced

Redis
Session Storage

31

Use Redis Hash For Session Store

userid 8754

name dave

ip 10:20:104:31

hits 1

lastpage home

hash key: usersession:1

HMSET usersession:1 userid 8754 name dave ip 10:20:104:31 hits 1
HMGET usersession:1 userid name ip hits
HINCRBY usersession:1 hits 1

HSET usersession:1 lastpage “home”
HGET usersession:1 lastpage
HDEL usersession:1 lastpage

Hashes store a mapping of keys to values – like a dictionary or associative array – but faster

DEL usersession:1

32

Use Case: Rate-limiting

Limit the peak load on your legacy database by
limiting the number of queries per second to
the highest threshold

How Redis helps you?

•Built-in counters

•Time-to-live

•Single-threaded architecture assures
serializability

3. Redis for Metering

32

33

Use Cases:

•Real-time analytics

•IoT

•Log collection, time-series

How Redis helps you?

•Pub/Sub

•List

•Sorted Set

4. Redis for Fast Data Ingest

33

34

Do more with Redis

34

• Caching

• Session Store

• Metering

• Fast Data Ingest

It’s a Swiss Army Knife for data processing

• Primary Database

• Real-time Analytics

• Messaging

• Recommendations

• High-speed Transactions

• Search – RediSearch

• Geo Spatial Indexing

Managing Leaderboards w/ Redis
Sorted Sets

Click to add text

36

Leaderboard with Sorted Sets Example

The Problem

• MANY users playing a game
or collecting points

• Display real-time leaderboard.
• Who is your nearest

competition
• Disk-based DB is too slow

Why Redis Rocks

• Sorted Sets are perfect!
• Automatically keeps list of

users sorted by score
• ZADD to add/update
• ZRANGE, ZREVRANGE to get

user
• ZRANK will get any users

rank instantaneously

37

Redis Sorted Sets

ZADD game:1 10000 id:1
ZADD game:1 21000 id:2
ZADD game:1 34000 id:3
ZADD game:1 35000 id:4
ZADD game:1 44000 id:3

or
ZINCRBY game:1 10000 id:3

34000 id:3
35000 id:4

21000 id:2

10000 id:1

ZREVRANGE game:1 0 0
ZREVRANGE game:1 0 1 WITHSCORES

44000 id:3

+ 10000id:3

Redis Streams
Click to add text

39

Redis Streams

• 1st class Redis citizens

• An abstract data type that is not unlike a log

• Designed with time series data in mind

• Provide some "Kafkaesque" messaging abilities

40

Why invent yet another Redis thingamajig?

Necessity is the mother of invention

There ain't no such thing as a free lunch

The existing (i.e. lists, sorted sets, PubSub) isn't "good enough" for things
like:

• Log-like data patterns
• At-least-once messaging with fan-out
And listpacks, radix trees & reading Kafka :)

41

The Log is hardly a new thing

A storage abstraction that is:
• Append-only, can be truncated
• A sequence of records ordered by time
A Logical Log is:
• Based on a logical offset, i.e. time (vs. bytes)
• Therefore time range queries
• Made up of in-memory data structures, naturally

42

Logging streams of semi-structured data

A data stream is a sequence of elements. Consider:
• Real time sensor readings, e.g. particle colliders
• IoT, e.g. the irrigation of avocado groves
• User activity in an application
…

• Messages in distributed systems

43

A side note about Distributed Systems

“A distributed system in which components located on networked

computers communicate and coordinate their actions by passing

messages” – Distributed Computing, Wikipedia

Includes: client-server, 3/n-tier, peer to peer, SOA, micro- & nanoservices,

FaaS & serverless...

44

An observation

There are only two hard problems in distributed systems:

2. Exactly-once delivery

1. Guaranteed order of messages

2. Exactly-once delivery

- Mathias Verraes, on Twitter

45

Refresher on message delivery semantics

Fact #1: you can choose one and only one:
•At-most-once delivery, i.e. "shoot and forget"
•At-least-once delivery, i.e. explicit ack
Fact #2: exactly-once delivery doesn't exist
Observation: order is usually important (duh)

46

This isn’t exactly a new challenge

Consider the non-exhaustive list at taskqueues.com

• 17 message brokers, including: Apache Kafka, NATS, RabbitMQ and
Redis

• 17 queue solutions, including: Celery, Kue, Laravel, Sidekiq, Resque
and RQ <- all these use Redis as their backend btw ;)

And that’s without considering protocol-based etc.

47

So again, why "reinvent hot water"?

Redis (in general and) Streams (in particular) are:

• Everywhere, from the IoT's edge to the cloud

• Blazing fast, massive throughput

• Usable from all(most) languages and platforms

(IoT microcontrollers included)

Note: apropos IoT, they are great async buffers

48

Redis Streams “formalism”

A stream is a sequence of entries (records). It:
• Is "sharded" by key ("topic")
• Has 1+ producers
• Has 0+ consumers
• Can provide at-most- or at-least-once semantics
• Enables stream processing/real time pipelines (as opposed to batch)

49

A picture of a stream

50

Entries in the Stream

Every entry has a unique ID that is its logical offset. The ID is in following format:

<epoch-milliseconds>-<sequence>

Note: each ID part is a 64-bit unsigned integer

An entry also has one or more ordered field-value pairs, allowing for total
abstraction (the empty string is a valid field name, good for time series).

51

Adding Entries

52

Iterating

53

Blocking Read

54

Multi

55

The problem with scaling consumers

A consumer of a stream gets all entries in order, and will eventually
become a bottleneck.

Possible workarounds:

• Add a "type" field to each record - that's dumb

• Shard the stream to multiple keys - meh

• Have the consumer dispatch entries as jobs in queues … GOTO 10

56

Consumer Groups

” … allow multiple consumers to cooperate in processing messages
arriving in a stream, so that each consumers in a given group takes a
subset of the messages. “

Shifts the complexity of recovering from consumer failures and group
management to the Redis server

57

Group orientation

We are here :)
• Groups are named and are explicitly (!) created:

XGROUP CREATE temps agg $
• Consumers are also named, and each gets only a subset of the stream:

XREAD-GROUP GROUP agg CONSUMER escher-01 STREAMS temps >
• XACK/NOACK in XREAD, XCLAIM, XPENDING

58

Redis Streams status

• Expected to be GA within a month or so (est. Oct 2018)

59

Try it yourself

From your browser: https://try.redis.io
Or download it: https://redis.io/download
Or clone it: https://github.com/antirez/redis
Or dockerize it: docker run -it redis
Or try Redis Enterprise by https://redislabs.com

60

Questions

Dave Nielsen
dave@redislabs.com
@davenielsen

mailto:dave@redislabs.com

