
VoltDB

David Rolfe
Director of Solution Architecture, EMEA

Doug Jauregui
Sr. Solutions Engineer

Legacy database technology is obsolete
• Legacy RDBMS designs date from about

1985.

• Vendors are finding legacy databases
increasingly uneconomic.

• Legacy databases struggle to scale beyond
2 nodes.

• But demand for transactions is increasing
all the time.

• Meanwhile Moore’s law means hardware
and RAM keeps getting cheaper

$1

$10

$100

$1.000

$10.000

$100.000

$1.000.000

$10.000.000

 1

 10

 100

 1.000

 10.000

 100.000

 1.000.000

 10.000.000

 100.000.000

 1.000.000.000

 10.000.000.000

 100.000.000.000

1980 1990 2000 2010

Internet Traffic (GB Month), Transistors per CPU and Cost of RAM over time

Total Internet Bandwidth (GB/Mo)

Transistors per CPU

Price of Ram ($/GB)

21st Century Requirements for transaction processing

• Virtualization friendly .
• ACID transactions.
• Millisecond response times.
• No ”Long Tail”
• Supports complicated logic
• Easily scalable beyond 2 nodes.
• HA “Just Happens”
• Geo replication
• “Translytics”/”HTAP”

RDBMS - How We Thought an RDBMS Worked

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

ID=1, Qty= 200, LastDate= 23 /March/18

UPDATE users SET BAL = 190 WHERE ID =1;

INSERT INTO sales Iuserid, productId, cost) VALUES (42,1,10);

UPDATE products SET qty = 199 WHERE ID = 1;

COMMIT;

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

ID=1, Qty= 200

UPDATE users SET BAL = 190 WHERE ID =1;

INSERT INTO sales Iuserid, productId, cost) VALUES (43,1,10);

UPDATE products SET qty = 199 WHERE ID = 1;

COMMIT;

Inflight Transactions

WAΙTΙNG

WAΙTΙNG

RAM
DATA

DISK
DATA

CPU

RDBMS - What Actually Happens – Part 1…

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

ID=1, Qty= 200, LastDate= 23 /March/18

UPDATE users SET BAL = 190 WHERE ID =1;

INSERT INTO sales Iuserid, productId, cost) VALUES (42,1,10);

UPDATE products SET qty = 199 WHERE ID = 1;

COMMIT;

SELECT * FROM PRODUCTS WHERE ID = 1 FOR UPDATE OF qty;

ID=1, Qty= 200

UPDATE users SET BAL = 190 WHERE ID =1;

INSERT INTO sales Iuserid, productId, cost) VALUES (43,1,10);

UPDATE products SET qty = 199 WHERE ID = 1;

COMMIT;

Inflight Transactions

WAΙTΙNG

WAΙTΙNG

RAM
DATA

DISK
DATA

CPU

CPU

RDBMS - What Actually Happens – Part 2

Inflight Transactions

WAΙTΙNG

WAΙTΙNG

Inflight Transactions

WAΙTΙNG

WAΙTΙNG

RAM
DATA

RAM
DATA

CPU

CORE

CPU

CORE

SAN

If we tried this in a supermarket…

Dr. Michael Stonebraker found a solution..

Index
Management

11%

Logging
20%

Locking
18%

Latching
10%

Buffer
Management

29%

Useful Work
12%

How VoӏtDB works

Inflight Transactions

Inflight Transactions

RAM
DATA

RAM
DATA

WAΙTΙNG

WAΙTΙNG

WAΙTΙNG

WAΙTΙNG

BOOK

BOOK

PAY

PAY

BOOK

PAY

Bay
Item 1

Bay
Item 2

BOOK

BOOK

PAY

Bay
Item 1

Bay
Item 2

BOOK

PAY

BOOK

BOOK

BOOK

PAY

PAY

BOOK

PAY

Bay
Item 1

Bay
Item 2

BOOK

BOOK

PAY

Bay
Item 1

Bay
Item 2

BOOK

PAY

BOOK

CORE

CORE

CORE

CORE

Local File
System

Local File
System

How a supermarket works…

VoltDB’s Role

Tranactions

Scale

MillisecondsACID
Transactions

Batch
Processing/

HDFS
NoSQL

Legacy
OLTP

The only 3 ways to interact with any database
Approach Examples Strengths Weaknesses

Many SQL
Statements +
Commit or Rollback

JDBC, ODBC, Liked by
developers,
initial
development is
rapid

• Doesn’t handle scaling OLTP loads well – DB spends its
time figuring out who can see what instead of working

• Constant locking problems for shared, finite resources
• Failure of a client to Commit or Rollback causes a

temporary resource leak

Move all the data
to the client and
back again

NoSQL, KV
Stores

Very developer
friendly

• Multiple updated copies of the data can arrive at the
same time for scaling OLTP loads

• All of the data gets moved across the network, every
time.

Stored Procedures VoltDB,
PL/SQL

Predictable
speed and best
possible scaling
characteristics

• Not in fashion with developers.
• PL/SQL created perception of complexity.
• Other implementations of Java Stored Procedures really

slow.

A Proven and Reliable Partner

loT Platforms, Energy, Sensor
Smart grid/meters, asset tracing & management

Telco
Billing/rights management, subscriber data, etc.

Financial Services
Risk, market data management, customer mgt.

Personalize, Customize, Target
Ad optimization, audience segmenting, customer service

Infrastructure, Dashboards, KPIs
Data pipeline, system performance, streaming ETL.

VoltDB & Machine Learning

Near Real Time Data for
Models and Rules

VoltDB

Spark + Hadoop

New
Data

Rules

Fraud
Prevention

Single Sign-on
Manager

Consumer
Banking Risk
Management

Credit Card &
Mobile Pay

Consumer
Banking
System

Mobile log-in

Message Queue Real-Time
Decision Making

VoltDB

Application/Use Case
• Fraud Prevention

• Single sign-in of all Huawei phones

• Consumer banking risk management

Why VoltDB?

• > 50% reduction in fraud cases

• > $15M/year saved from fraud loss

• 10k complex Transactions Per Second

• 99.99% transactions finish < 50ms

• 10x better performance than

traditional fraud detection

VoltDB & Machine Learning
• VoltDB has a C++ core with a Java layer on top for running stored

procedures

• VoltDB implements High Availability by running the same code in two
places at once.

• Any Java class can be used in a stored procedure call provided:
• It’s deterministic (all copies of the code have to act the same way…)
• It doesn’t access network resources (which would make it non-deterministic)

• Examples: H20.AI and (J)PMML

ML Example – User Defined Function in H20

ML Example – Calling JPMML from a Procedure

For more information:
www.voltdb.com
drolfe@voltdb.com

