Hardware Accelerated Similarity Search

George Williams
Who Am I?

Director, GSI Technology

Previously, Chief Data Scientist
Senior Data Scientist
AI Research Scientist
Software Engineer
Recent Headlines

- A new ARM-based server processor challenges for the data center
- Facebook is looking for engineers to build its own chips
- JUST HOW LARGE CAN NVIDIA’S DATACENTER BUSINESS GROW?
Convergence and Integration

That was then...
This is Now: Technology Disintegration

Amazon Web Services™
EC2
Google Cloud Platform
Intel AI
Facebook
Qualcomm
Habana
ARM
Movidius
an Intel company
Microsoft
Microsoft Azure
HoloLens
NVIDIA
MYTHIC
Baidu
More Innovation Around The Corner

High Performance Memories & Associative Computing
GSI’s Similarity Search Accelerator

High Performance Memories & Associative Computing
Agenda

- Chip Explosion
- GSI Technology
- What is Vector Similarity Search?
- GSI’s Similarity Search Accelerator
- Integration Case Studies: Bio, Database
- Early Adopters Program
Who Is GSI Technology?

High Performance Memories & Associative Computing
What We Do

High Performance SRAM and DRAM

Aerospace, Government, R&D

GSI Vector Similarity Search Accelerator Chip

High Performance Memories & Associative Computing
What Is Vector Similarity Search?
What is Vector Similarity Search?

☑️ Numeric Representation

Bit-vector → 0110000100
Coordinates → (2.3, 5.6)
What is Vector Similarity Search?

- Numeric Representation
- Simple “Distance” Function

\[d = \text{Func}(a, b) \]
What is Vector Similarity Search?

- Numeric Representation
- Simple “Distance” Function
- K Nearest Neighbor (Top-K)
What is Vector Similarity Search?

- Numeric Representation
- Simple “Distance” Functions
- K Nearest Neighbor (Top-K)
- Search is Computational
- E-Commerce, Bioinformatics
Visual Search

- Binary Codes, Continuous Embeddings
- Euclidean, L1, Hamming, Cosine
- >1 Billion Images
Visual Search: Embedding Space
Bioinformatics: Molecule Similarity

- Fingerprints
- Tanimoto
- Many Large DBs
- 100s GB
Molecule Similarity: Tanimoto

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>A^B</th>
<th>A^C</th>
<th>B^C</th>
<th>Tanimoto Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.6 or 60%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

A = Number of bits set in both = 3
B = Number of bits set in (1), but not in (2) = 2
C = Number of bits set in (2), but not in (1) = 0

Tanimoto Coefficient = \(\frac{A}{A + B + C} \)
= \(\frac{3}{3 + 2 + 0} \) = 0.6 or 60%

Similarity Searching

- ✔️ Jaccard
- ✔️ Intersection / Union
Bioinformatics: Molecule Similarity

- Drug Discovery of Novel Molecules
- Virtual Screening
- Activity (Toxicity) Prediction
CREATE TABLE features (
id bigint(11) NOT NULL AUTO_INCREMENT,
feature_vector binary(4096) DEFAULT NULL,
KEY id (id) USING CLUSTERED COLUMNSTORE)

SELECT
id
FROM
features
WHERE
DOT_PRODUCT(feature_vector, <Input>) > 0.9

- Idiomatic SQL
- Integrate Into Data Pipelines
- Leverage Skills of Data Eng & Scientists
Many Domains and Applications

- E-Commerce / Recommendations
- Bioinformatics / Genomics
- Healthcare / Medical Records
- Cybersecurity / Malware Detection
- Computer Vision / Video Surveillance
GSI's Similarity Search Accelerator
Computational Memory

High Performance Memories & Associative Computing
“In-Place” Associative Processing

Bit Logic
- Programmable
- 2 million

Vector A

Vector B

C = f(A, B)
Consumer Board Solution

- PCIe Card
- 16GB Memory
- 2 Chips Per Board
- On Board DDR4 Main Memory
- SRAM Cache Per Chip

High Performance Memories & Associative Computing
1 Chassis (4U) Solution

4 Boards Per Chassis

Chassis

- PCIe Card
 - 16GB Memory
 - 128Mb
 - 128Mb

High Performance Memories & Associative Computing
Multiple Chassis Solution

One Chassis Is The Master
Network Attached Storage

RDMA support (NAS As Data Source)

High Performance Memories & Associative Computing
Segmentation by Clustering

- Offline Clustering / K-Means
- Avoids Full DB “Scan”
- Faster Performance
Availability

- Q4, 2018: Chip
- Q1, 2019: Demo boards
- Q2, 2019: Mass production

PCIe Card

- 16GB Memory
- 128Mb
- 128Mb
“GSI’s [Accelerator] can dramatically reduce the time required to search our small molecules database...”

- Dr. Efrat Ben-Zeev, Computational Chemist
Weizmann Institute Case Study

Molecule Similarity Search
✓ Biovia Pipeline Pilot Application
✓ Query of 34M Molecule DB Takes 10 Minutes!

Using GSI Accelerator (estimated)
✓ Query Latency Reduced To 300ms
✓ 400 Queries In 1 Second
In-Memory Database Integration

- Database
- C Library
- DRIVERS
- GSI Accelerator

High Performance Memories & Associative Computing
In-Memory: Expected Performance

<table>
<thead>
<tr>
<th></th>
<th>Memory Speed</th>
<th>Vector Size</th>
<th>Throughput (imgs/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemSQL</td>
<td>~50GB / sec</td>
<td>4 KB</td>
<td>12.5 million images/sec</td>
</tr>
<tr>
<td>GSI</td>
<td>~100GB / sec</td>
<td>4 KB</td>
<td>25 million images/sec</td>
</tr>
</tbody>
</table>
Early Adopters Program

- Consult With Our Hardware and AI Experts
- Co-Development and App Integration
- Access to simulator and test hardware
- Co-Marketing Opportunity
GSI Upcoming Events

- Nov, Open Data Science Panel, Visual Search
- Nov, PyData (Washington DC)
- Dec, GSI Similarity Search Accelerator Workshop
- Coming Soon, GSI’s Tech Meetup
- 2019, First Chips and Boards Available
Contact Us

Twitter: @gsitechnology
@cgeorgewilliams

Blogs: gsitechnology.com
medium.com/gsitechnology

Email: associativecomputing@gsitechnology.com
The End. Thanks!
Query

Option 1: INFRINGEMENT IN PRODUCTION
- Image2Vec (VGG, Resnet)
- NLP
- LSTN

Option 2: Query Vector done by External Application
- Fingerprint Query
- In Memory Vector (Cosine)

Option 3: 3rd Party Inference Vector
Single Board

- PCle Card
- 16GB Memory
- 128Mb
- 128Mb

- Small Database
- Fit All Data Into Cache For Lowest Latency
- If Larger, Paging Occurs To Memory
- Cluster Techniques
Large Database

Chassis

PCIe Card

16GB Memory

128Mb 128Mb

Large Database (<1TB, Flat)

Pharma, Drug Search, Weizmann Molecule Search, In-Memory

High Performance Memories & Associative Computing
Multi Board Solutions

For Huge Databases (~1TB)

16GB Memory

PCIe Card

128Mb 128Mb

For Throughput: Batch Queries Split Across Boards

Chassis Host Master Merges The Results

High Performance Memories & Associative Computing
Offline Data Preparation

Training → Inference → Optimize For Cache and Memory
Clustering For Large Databases

- Offline Clustering
- Centroids List <16GB
- Reduces Storage
- Only Centroids Are Kept Local
- For Real-Time Performance
Huge Database

Chassis

- PCIe Card
 - 16GB Memory
 - 128Mb 128Mb

- PCIe Card
 - 16GB Memory
 - 128Mb 128Mb

- PCIe Card
 - 16GB Memory
 - 128Mb 128Mb

- PCIe Card
 - 16GB Memory
 - 128Mb 128Mb

Approx For Large Vectors (Quantization)

Exact Nearest Neighbors For Small Vectors

Large Scale Sim Search, FAISS

High Performance Memories & Associative Computing
Biovia Application Integration

Biovia Application Used By Thousands of Bio-Tech Companies
Weizmann: Load A Database

Load database

High Performance Memories & Associative Computing
Weizmann: 3rd Party Search

High Performance Memories & Associative Computing
Weizmann: Select Search Method

Step 1: Select Search Method
Step 2: Search for similar fingerprints
Weizmann: Define Parameters

GSI's Python code embedded here.

Step 3: Search parameters defined here, e.g. similarity threshold, K
Weizmann: Run Protocol