In-Memory
| njComputing e,

SUMMITI20s

Ingesting Streaming Data for Analysis in
Apache Ignite

Pat Patterson
StreamSets

pat@streamsets.com
@metadaddy

Product Support Use Case

Continuous Queries in Apache Ignite
Integrating StreamSets Data Collector with Apache Ignite
Demo

Wrap-up

2

m

In-Memory
Computing | norm

AMERICA

SUMMITIz20s

Who is StreamSets?

Seasoned leadership team

cloudera Gy

Informatica

Customer base from global
8000

50%

Unique commercial
downloaders

2000+

Open source downloads
worldwide

1,000,000+

Broad connectivity

50+

History of innovation

> [in]

In-Memory
Computing | norm

SUMMITIz20s

AMERICA

Use Case: Product Support

HR system (on-premises RDBMS) holds employee reporting hierarchy

Customer service platform (SaaS) holds support ticket status, assignment to
support engineers

Device monitoring system (CSV files / JSON via Kafka) provides fault data
How do we query across data sources?

How do we get notifications of faults for high-priority tickets?

In-Memory
4 I N | Computing | romm

SUMMITIz20s

Apache Ignite Continuous Queries

Enable you to listen to data modifications occurring on Ignite caches
Specify optional initial query, remote filter, local listener
Initial query can be any type: Scan, SQL, or TEXT

Remote filter executes on primary and backup nodes

In-Memory
5 I N | Computing | romm

SUMMITIz20s

Apache Ignite Continuous Queries

Local listener executes in your app’s JVM
Can use BinaryObjects for generic, performant code

Can use ContinuousQueryWithTransformer tO run a remote transformer
e Restrict results to a subset of the available fields

In-Memory
6 || Computing cxr:,

SUMMITIz20s

Continuous Query with Binary Objects —

Setup

// Get a cache object
IgniteCache<Object, BinaryObject> cache = ignite.cache (cacheName) .withKeepBinary() ;

// Create a continuous query
ContinuousQuery<Object, BinaryObject> gry = new ContinuousQuery<> () ;

// Set an initial query - match a field value
gry.setInitialQuery (new ScanQuery<>((IgniteBiPredicate<Object, BinaryObject>) (key, wval) -
> A
System.out.println ("### applying initial query predicate");
return val.field(filterFieldName) .toString () .equals(filterFieldValue) ;
1))

// Filter the cache updates
gry.setRemoteFilterFactory(() =-> event -> {
System.out.println ("### evaluating cache entry event filter");
return event.getValue () .field(filterFieldName) .toString() .equals(filterFieldValue);

b)) ;

In-Memory
7 || Computing cxr:,

SUMMITIz20s

Continuous Query with Binary Objects —

Listener

// Process notifications
gry.setlLocallListener ((evts) -> {
for (CacheEntryEvent<? extends Object, ? extends BinaryObject> e : evts) {

Object key = e.getKey();

BinaryObject newValue = e.getValue();
System.out.println ("Cache entry with ID: " + e.getKey () +
" was " + e.getEventType () .toString () .toLowerCase())
BinaryObject oldValue = (e.i1s0OldValueAvaillable()) ? e.getOldValue() : null;

processChange (key, oldValue, newValue) ;

In-Memory
8 || Computing cxr:,

SUMMITIz20s

Continuous Query with Binary Objects —

Run the Query

// Run the continuous query
try (QueryCursor<Cache.Entry<Object, BinaryObject>> cur = cache.query(qgry)) {

// Iterate over existing cache data
for (Cache.Entry<Object, BinaryObject> e : cur) {
processRecord(e.getKey (), e.getValue()):

}

// Sleep until killed
boolean done = false;
while (!done) {
try {
Thread.sleep (1000) ;
} catch (InterruptedException e) {

done = true;

}

In-Memory
9 I N | Computing | romm

SUMMITIz20s

Demo: Continuous Query Basics

Continuous Query with Transformer

ContinuousQueryWithTransformer<Object, BinaryObject, String> gry =
new ContinuousQueryWithTransformer<>();

// Transform result - executes remotely

gry.setRemoteTransformerFactory (() -> event -> {
System.out.println ("### applying transformation");
return event.getValue () .field(fieldName) .toString() ;

});

// Process notifications - executes locally

gry.setlLocallistener ((values) =-> {
for (String value : values) {
System.out.println(transformerField + ": " + wvalue);

}
});

In-Memory
11 |InjComputing ez,

SUMMITIz20s

Demo: Continuous Query
Transformers

Key Learnings

Need to enable peer class loading so that app can send code to execute on remote node
* <property name="peerClassLoadingEnabled" wvalue="true"/>

By default, CREATE TABLE City ..in SQL means you have to use
ignite.cache ("SQL PUBLIC CITY")

* Override when creating table with cache name=city

Binary Objects make your life simpler and faster

RTFM! CacheContinuousQueryExample.java is very helpful!

In-Memory

13 Computing | norm
Dln SUMMIT 206

The StreamSets DataOps Platform

~

e ‘

D

 J "“’“ (s0w) §g i
- ,/O\O =]
~ : ﬁ i H
APls HUBU
Streaming 2
4 n o Analytics
;1 scada @‘5 < ; "’2 -
oT o elastic SOIr° © TRIFACTA
NOSQL
i Search alte ryx A;CANA DATA
6 N 1 \ D '.':?}.'tamr Operational _ﬁ’@OMDATA
—). | DRILL e > it +ableau
NetFlow, DNS, 1& 1& T o
Windows, Proxy (Low-Latency DB (Waterline Data, s DataRobot
= ' £<7 Alation Spark. H.O
@ ‘@ __':l_: collibra: Machine Learning 2
Database/CDC Data Lake
P,
Real-Time Apps

Clickstream -
#ir amazon) A\ Azure

48 webservices
In-Memory
Google Cloud Platform 14 Ilnlcompuﬁng NORTH
SUMMITIz20s

. A Swiss Army Knife for Data

StreamSets Data Collector and Ignite

Read Delimited Fil
from Disk

A

@

sign uuid per

record

i

Convert String
Fields

%

v
b

ilter on Fault Cod

/

SerialNumber, Timestamp, FaultCode

7326001,2018-09-18 00:00:00,0

INSERT INTO FAULT

VALUES

('?

L 4

f>

L 4

f>

L 4

(FAULT,

?)

1D,

/

Q

-

i

Lookup Fault Code

4

p

Q

) -

I}

\

Discard Null Faults

J

SERIAL NUMBER,

TIMESTAMP)

16

Write Faults to Ignite

m

In-Memory
Computing

NNNNN

SUMMIT 2

Ignite JDBC Driver

org.apache.ignite.IgniteddbcThinDriver
Thin driver - connects to cluster node

Located in ignite-core-version.jar

JDBC URL of form:
jdbc:ignite:thin://hostname[:portl..port2] [,hostname...] [/schema] [?<params>]

NOTE — when querying metadata: table, column names must be UPPERCASE! ! ! - IGNITE-9730

There is also the JDBC Client Driver — starts its own client node

In-Memory
17 |InjComputing ez,

SUMMITIz20s

from CSV

e
N
O
O)

=
m
=
Q

-

. Data Architecture

Demo: Ingest Kafka, MySQL,
Salesforce

IGNITE-9606 breaks JDBC integrations ®

metadata.getPrimaryKeys () returns KEY as the column name, returns column name as
primary key name

Had to build an ugly workaround into the JDBC Consumer to get my demo working:

ResultSet result = metadata.getPrimaryKeys (connection.getCatalog(), schema, table);
while (result.next()) {

// Workaround for Ignite bug

String pk = result.getString (COLUMN NAME) ;

if (" _KEY".equals(pk)) {

pk = result.getString (PK NAME) ;
}
keys.add (pk) ;

In-Memory
21 |In|Computing e,

SUMMITIz20s

Continuous Streaming Application

Listen for high priority service tickets

Get the last 10 sensor readings for the affected device

Continuous Streaming Application

// SQL query to run with serial number
SglFieldsQuery sgl = new SglFieldsQuery (
"SELECT timestamp, fault FROM fault WHERE serial number = ? ORDER BY timestamp DESC LIMIT 10"
) ;
// Process notifications - executes locally
gry.setLocallListener ((values) =-> {
for (String serialNumber : values) {
System.out.println ("Device serial number " + serialNumber) ;
System.out.println("Last 10 faults:");
QueryCursor<List<?>> query = faultCache.query(sgl.setArgs(serialNumber)):;
for (List<?> result : query.getAll()) {
System.out.println(result.get(0) + " | " + result.get(l));

In-Memory
23 |In|Computing e,

SUMMITIz20s

Demo: Ignite Streaming App

Other Common StreamSets Use Cases

\

Data Lake

Replatforming loT Cybersecurity Real-time applications

s [in]eemey
ompurting | NorTH
n SUMMIT 206

Customer Success

COX

AUTOMOTIVE"

& Availity

“StreamSets allowed us to build and operate over
175,000 pipelines and synchronize 97% of our structured
data in R&D to our Data Lake within 4 months. This will

save us billions of dollars.”

“We chose StreamSets over NiFi as our enterprise-wide
standard for our next generation data lake infrastructure
because of their singular focus on solving deployment and
operations challenges.”

“It’s simple and easy enough that we don’t need to find a
StreamSets developer to create their own data pipelines.
Before, it could take 90 days just to find a traditional ETL

developer.” In-Memory
26 I | N IComputing NORTH

AMERICA

SUMMITIz20s

Conclusion

lgnite’s continuous queries provide a robust notification mechanism for
acting on changing data

lgnite’s thin JDBC driver is flawed, but useful

StreamSets Data Collector can read data from a wide variety of sources and
write to Ignite via the JDBC driver

In-Memory
21 |In|Computing ez,

SUMMITIz20s

References

Apache Ignite Continuous Queries

apacheignite.readme.io/docs/continuous-queries

Apache Ignite JDBC Driver

apacheignite-sqgl.readme.io/docs/jdbc-driver

Download StreamSets

streamsets.com/opensource

StreamSets Community
streamsets.com/community

In-Memory
28 ||n|Computing e,

SUMMITIz20s

In-Memory
| njComputing e,

SUMMITI20s

Thank You!

Pat Patterson
pat@streamsets.com
@metadaddy

