
Apache Ignite - Using a Memory Grid for
Heterogeneous Computation Frameworks

A Use Case Guided Explanation

Chris Herrera
Hashmap

2

Topics

• Who - Key Hashmap Team Members
• The Use Case - Our Need for a Memory Grid
• Requirements
• Approach V1
• Approach V1.5
• Approach V2
• Lessons Learned
• What’s Next
• Questions

3

Who - Hashmap

WHO
● Big Data, IIoT/IoT, AI/ML Services since 2012
● HQ Atlanta area with offices in Houston, Toronto,

and Pune
● Consulting Services and Managed Services

REACH
● 125 Customers across 25 Industries

PARTNERS
● Cloud and technology platform providers

4

Who - Hashmap Team Members

Chris Herrera
Chief Architect/Innovation Officer

Hashmap
Houston, TX

Akshay Mhetre
Team Lead
Hashmap
Pune, India

Jay Kapadnis
Lead Architect
Hashmap
Pune, India

The Use Case
Oilfield Drilling Data Processing

6

Plan

Why - Oilfield Drilling Data Processing

WITSML
Server

Plan
Store

Optimize

The Process

Execute

7

Why - Oilfield Drilling Data Processing

Vendors Financial Homegrown

The Plan
● How to match the data
● Deduplication
● Missing information
● Various formats
● Various ingest paths

TDM EDM WellView Homegrown

Data Analyst

8

Why - Oilfield Drilling Data Processing

Rig Site Data Flow

Mud
Logger

Cement

Wireline

MWD

CSV
CSV

CSV

CSV
CSV

DLIS

WITSML
Server

WITSML
Server

Magic

● Operational Data
● Missing classification
● Unknown quality
● Various formats
● Various ingest paths
● Unknown completeness

Data Analyst

9

Why - Oilfield Drilling Data Processing

Oilfield Drilling Data Processing - Office

Vendors Financial Homegrown

TDM EDM WellView Homegrown

● Impossible to generate insights without huge
data cleansing operations

● Extracting value is a very expensive operation
that has to be done with a combination of
experts

● Generating reports requires a huge number of
man-hours

Data Analyst

10

Why - Oilfield Drilling Data Processing

BUT WAIT…

11

Why - Oilfield Drilling Data Processing

Feature
Engineering
Generate additional
features that are
required to get useful
insights into the data

Persist &
Report
Land the data into a
store that allows for BI
reports and interactive
queries

Clean
Deduplicate,
interpolate, pivot, split,
aggregate

Load
Load the data into a
staging area to start
understanding what to
do with it

Identify &
Enrich
Understand where the
data came from and
what its global key
should be

Parse
Parse the data from
CSV, WITSML, DLIS,
etc...

We still have all the compute to deal with, some of which is very legacy code

Requirements
What do we have to do?

13

Functional Requirements

Cleaning and Feature Engineering (the legacy code I referred to)
• Parse WITSML / DLIS
• Attribute Mapping
• Unit Conversions
• Null Value Handling
• Rig Operation Enrichment
• Rig State Detection
• Invisible Lost Time Analysis
• Anomaly Detection

14

Non-Functional Requirements

DescriptionRequirement

● Very flexible ingest
● Flexible simple transformations

1 Heterogeneous Data
Ingest

● Easy to debug
● Trusted

2 Robust Data Pipeline

● Be able to support existing
computational frameworks / runtimes

3 Extensible Feature
Engineering

● Scales up
● Scales Down

4 Scalable

● If a data processing workflow fails at a
step, it does not continue with
erroneous data

5
Reliable

Approach V1
How Then?

16

Solution V1

TDM EDM WellView Homegrown

H
D

FS TDM EDM Well
View WITSML

H
D

FS
H

iv
e

WITS
ML

Server

CS
VCS

VFiles

Spark Zeppelin BI

Staging Reporting Marts ● Heterogeneous ingest implemented
through a combination of NiFi
processors/flows and Spark Jobs

● Avro files loaded as external tables
● BI connected via ODBC (Tableau)
● Zeppelin Hive interpreter was used

to access the data in Hive

17

Issues with the Solution

● Very Slow BI

● Tough to debug cleansing

● Tough to debug feature extractions

● A lot of overhead for limited benefit

● Painful data loading process

● Incremental refresh was challenging

● Chaining the jobs together in a workflow was very hard

○ Mostly achieved via Jupyter Notebooks

● In order to achieve the functional requirements, all of the computations

were implemented in Spark, even if there was little benefit

18

V1 Achieved Requirements
Achieved DescriptionRequirement

● Very flexible ingest
● Flexible simple transformations

1 Heterogeneous Data
Ingest

● Hard to Debug
● Hard to modify

2 Robust Data Pipeline

● Hard to support other frameworks
● Hard to modify current computations

3 Extensible Feature
Engineering

● Scales up but not down4 Scalable

● Hard to debug 5 Robust

Approach V1.5
An Architectural Midstep

20

A Quick Architectural Midstep (V1.5)

TDM EDM WellView Homegrown

H
D

F
S TDM

H
D

F
S

/I
G

F
S

H
iv

e

WITS
ML

Server

CS
VCS

VFiles

Spark Jupyter BI

Staging Reporting Marts

● Complicated an already complex
system

● Did not solve all of the problems
● Needed a simpler way to solve all of

the issues
● Ignite persistence was released

while we were investigating this

Ig
n

it
e

WITSMLEDM
Well
View

In-Memory MapReduce

Approach V2
How Now?

22

Kubernetes

Approach V2
H

D
FS

Ig
ni

te

Spark Zeppelin

● Allows for very interactive
workflows

● Workflows can be scheduled
● Each workflow is made up of

functions (microservices)
● Each instance of a workflow

workflow contains its own
cache

● Zeppelin via the Ignite
interpreter

● Workflows loaded data and
also processed data

Service Grid Memory Grid

Docker

Caches

Workflow
Cache

Workflow API Scheduler API

Flink

Functions API

Persistent Storage
(Configurable)

Functions

Workflow
Cache

Function Function

23

Approach V2 - The Workflow

Apache IgniteApache Ignite

Service Service ServiceKey Val

SQL / DF

Key Val

SQL / DF

Function 1 Function 2 Function 3Source

● Source is the location the data is coming from
● The workflow is the data that goes from function to function
● Data stored as data frames can be queried by an API or another function

24

Approach – The Workflow

• Each function runs as a
service using Service Grid

• The function receives input
from any source

• Kafka*
• JDBC
• Ignite Cache

• Once the function is applied,
store the result into the
Ignite cache store

25

Workflow Capabilities

● Start / Stop / Restart
● Execute single functions within a workflow
● Pause execution to validate intermediate steps

26

Approach - Spark Based Functions - Persistence

• After each function has
completed its computation
the Spark DataFrame is
stored via distributed storage

• Table name is stored as
SQL_PUBLIC_<tableName>

df.write
.format(FORMAT_IGNITE)
.option(OPTION_TABLE, tableName)
// table name to store data
.option(OPTION_CREATE_TABLE_PRIMARY_KEY_
FIELDS, “id”)
.save()

Apache Ignite
Service Key Val

DF

Spark
Function

27

Approach – Intermediate Querying

• Once the data is in the cache,
the data can be optionally
persisted using the Ignite
persistence module

• The data can be queried using
the Ignite SQL grid module as
well

• Allows for intermediate validation
of the data as it proceeds
through the workflow

val cache =
ignite.getOrCreateCache(cacheConfig)
val cursor = cache.query(new
SqlFieldsQuery(s”SELECT * FROM $tableName
limit 20"))
val data = cursor.getAll

Apache Ignite
Service Key Val

DF

Spark
Function

API

28

Approach - Applied to the Use Case

Apache IgniteApache Ignite

Service Service ServiceKey Val

SQL

Key Val

SQL

Java
WITSML

Client
(Docker)

Channel
Mapping /

Unit
Conversion

(Docker)

Rig State
Detection /
Enrichment

/ Pivot
(Spark)

WITS
ML

Server

Workflow API Scheduler API

29

V2 Achieved Requirements
Achieved DescriptionRequirement

● Very flexible ingest
● Flexible transformations

1 Heterogeneous Data
Ingest

● Easy to debug
● Easy to modify

2 Robust Data Pipeline

● Easy to add
● Easy to experiment

3 Extensible Feature
Engineering

● Scales up
● Scales down

4 Scalable

● Easy to debug
● Reliable

5 Robust

30

Solution Benchmark Setup

• Dimension Tables already loaded
• 8 functions (6 wells of data – 5.7 billion points)

• Ingest / Parse WITSML
• Null Value Handling
• Interpolation
• Depth Adjustments
• Drill State Detection
• Rig State Detection
• Anomaly Detection
• Pivot Dataset

• For V1 everything was implemented as a Spark application
• For V2 the computations remained close to their original format

31

Solution Comparison

V1 - Execute Time
• 9 Hours
Without WITSML Download
• 7 Hours

V2 - Execute Time
• 2 Hours
Without WITSML Download
• 22 minutes

19x Improvement V1 to V2

Lessons Learned
How Now?

33

Lessons Learned

● Apache Ignite is a great tool to speed up data processing without a
wholesale replacement of technology

● Apache Ignite does have a learning curve, it is definitely worth doing an
analysis beforehand to understand what it means to operationalize it

● Accelerating Hive via Ignite was not straightforward and, at times made it
very difficult to debug the actual issues that we were facing

● Spatial querying, while great, is LGPL, so be aware of that before your
specific implementation

● Understanding data locality in Ignite is crucial in larger data sets
● Ignite works very well inside of Kubernetes due to its peer-to-peer

clustering mechanism
● The thin client JDBC driver does not have affinity awareness, so in multi-

node configurations, the thick client is preferred

What’s Next
How Now?

35

What’s Next

● Implementation of a UI on top of the computational framework
● Implementation of a standard set of “functions” that can be leveraged on

top of the memory grid
● Implementation of streaming sources via Kafka Ignite Sink

Questions

Chris Herrera
Hashmap

Apache Ignite - Using a Memory Grid for
Heterogeneous Computation Frameworks
A Use Case Guided Explanation

