
Fast and Easy Stream Processing with
Hazelcast Jet

Gokhan Oner
Hazelcast

© 2018 Hazelcast Inc.

Stream Processing
Why should I bother?

© 2018 Hazelcast Inc.

What is stream processing?

Data Processing: Massage the data when moving from place to place.

On-Line systems – request/response, small volumes, low-latency

Batch Processing – data in / data out, big volumes, huge latency

Stream processing – data in / data out, big volumes, low-latency

© 2018 Hazelcast Inc.

When to Use Stream Processing

• Real-time analytics

• Monitoring, Fraud, Anomalies, Pattern detection, Prediction

• Event-Driven Architectures

• Real-Time ETL

• Moving batch tasks to near real-time

• Continuous data

• Consistent Resource Consumption (1GB/sec -> 86TB/day)

© 2018 Hazelcast Inc.

What modern SPE can do for you?

• Offers high-level API to implement the processing pipeline

• map, filter, groupBy, aggregate, join …

• Offers connectors to read and write the data

• Kafka, HDFS, JDBC, JMS …

• You implement the data pipeline and submit it to the SPE

• Executes the pipeline in a parallel and distributed environment

• Moves the data through the pipeline (partitioning, shuffling, backpressure)

• Is fault-tolerant (survives failures) and elastic

• Monitoring, diagnostics etc.

© 2018 Hazelcast Inc.

Streaming and Hadoop
Major Evolutionary Steps

© 2018 Hazelcast Inc.

1st Gen: MapReduce

• Google File System Paper, 2003
https://static.googleusercontent.com/media/research.google.com/en//archi
ve/gfs-sosp2003.pdf

• MapReduce paper, 2004
https://static.googleusercontent.com/media/research.google.com/en//archi
ve/mapreduce-osdi04.pdf

• Apache Hadoop founded by Doug Cutting and Mike Cafarella at Yahoo
2006

• Commercial Open Source Distros: Cloudera, Hortonworks, MapR

• Lots of additions to the ecosystem

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf

© 2018 Hazelcast Inc.

• Apache Spark started as a research project at UC Berkeley in
the AMPLab, which focuses on big data analytics, in 2010.

• Goal was to design a programming model that supports a much wider
class of applications than MapReduce. Introduced DAG

2nd Gen: Spark

http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

https://amplab.cs.berkeley.edu/

© 2018 Hazelcast Inc.

• Fault-Tolerance of Spark designed with for batch

• Spark Streaming Paper, 2012. Stream as a sequence of micro-batches

• Spark has now moved on to DataFrames, Tungsten and Spark Streaming
and its architecture continues to evolve so it is also 3rd Gen (Continuous).

2nd Gen: Spark Streaming

http://people.csail.mit.edu/matei/papers/2012/nsdi_spark.pdf

© 2018 Hazelcast Inc.

3rd Gen: Continuous streaming

• DAG based

• Streaming based. Not micro-batch

• Batch is a simply streaming with bounds

• Learns from previous systems

• Informed by academic papers in the last decade, such as the Google[1][2] but many more

• Plethora of Choice: Apache Storm, Twitter Heron, Apache Flink, Kafka Streams, Google
DataFlow, Hazelcast Jet, Spark Continuous Streaming

[1] MillWheel: Fault-Tolerant Stream Processing at Internet Scale
[2] FlumeJava: Easy, Efficient Data-Parallel Pipelines

© 2018 Hazelcast Inc.

What is Hazelcast Jet?
Distributed computation engine built on Hazelcast IMDG
using directed acyclic graph (DAGs) to model data flow

DISTRIBUTED COMPUTING. SIMPLIFIED.

© 2018 Hazelcast Inc.

Hazelcast IMDG

12

• IMDG = “In-Memory Data Grid”, distributed cache with
computational capabilities and additional data structures

• Hazelcast values simplicity:
import com.hazelcast.core.Hazelcast;
import com.hazelcast.core.HazelcastInstance;
import java.util.concurrent.ConcurrentMap;

public class UseHazelcastMap {
public static void main(String[] args) {

HazelcastInstance hz = Hazelcast.newHazelcastInstance();

ConcurrentMap<String, String> map = hz.getMap("my-map");
map.put("key", "value");
String value = map.get("key");
map.putIfAbsent("somekey", "somevalue");
map.replace("key", "value", "newvalue");

}
}

© 2018 Hazelcast Inc.

Hazelcast IMDG

13

• Distributed implementations of ConcurrentMap, List, Queue,
MultiMap, JCache

• Distributed querying and data processing

• Distributed implementations of java.util.concurrent primitives
(AtomicLong, AtomicReference, CountdownLatch,..)

• More features: Ringbuffer, HyperLogLog and Distributed
ExecutorService.

• Embeddable single JAR

© 2018 Hazelcast Inc.

Hazelcast IMDG

© 2018 Hazelcast Inc.

Hazelcast Jet

• Distributed data processing engine with in memory

storage (through IMDG)

• Supports bounded (batch) and unbounded (stream) data

sources

• Project started in 2015, first public release Feb 2017 with

quarterly releases

• Single embeddable 10MB JAR

• JDK 8 minimum

© 2018 Hazelcast Inc.

What distributed means

16

• Multiple nodes (cluster)
• Scalable storage and performance
• Elasticity (can expand during operation)
• Data is stored partitioned and replicated
• No single point of failure

© 2018 Hazelcast Inc.

Stream and Batch Processing

Maps, Caches
and Lists

Databases

IoT

Custom
Connector

Enterprise
Applications

Hazelcast IMDG

HDFS

Stream

Batch or
Stream

Batch or
Stream

Batch or
Stream

Batch

Ingest

Alerts

Enterprise
Applications

Interactive
Analytics

Hazelcast IMDG
Maps, Caches,
Lists

Output

Databases

Enrichment

Kafka
Stream

File /
File Watcher Batch

Socket Stream

Kafka

HDFS

FileBatch
Database

Database
Events Stream

(via Striim CDC)

© 2018 Hazelcast Inc.

Jet goes far beyond IMDG

18

• Jet supports building general purpose data pipelines
• Several built in, distributed and scalable sources and sinks: IMDG, files,

sockets, HDFS, Kafka, JMS, JDBC, ..

• Windowed aggregation of infinite streams

• At-least-once and exactly-once processing through distributed in-memory
snapshotting

• Elasticity and fault tolerance to scale jobs up or tolerate outages.

• Extensive support for Java 8 lambdas with expressive API

© 2018 Hazelcast Inc.

Twitter Cryptocurrency Sentiment
Analysis

https://github.com/hazelcast/hazelcast-jet-demos

© 2018 Hazelcast Inc.

DAG Based Processing

© 2018 Hazelcast Inc.

DAG Based Processing

• Directed Acyclic Graphs are used to model computations

• Each vertex is a step in the computation

• It is a generalisation of the MapReduce paradigm

• Supports both batch and stream processing

• Other systems that use DAGs: Apache Tez, Flink, Spark, Storm…

© 2018 Hazelcast Inc.

Example: Word Count

If we lived in a single-threaded world:

1. Iterate through all the lines

2. Split the line into words

3. Update running total of counts with each word

final String text = "...";
final Pattern pattern = Pattern.compile("\\s+");
final Map<String, Long> counts = new HashMap<>();

for (String word : pattern.split(text)) {
counts.compute(word, (w, c) -> c == null ? 1L : c + 1);

}

© 2018 Hazelcast Inc.

Source Sink

Still single-threaded execution:
each Vertex is executed in turn

Tokenize Aggregate

Split the text into words
For each word emit (word)

Collect running totals
Once everything is finished,
emit all pairs of (word, count)

(text) (word) (word, count)

We can represent the computation as a DAG

© 2018 Hazelcast Inc.

Source

(text) (word)

Sink

(word, count)

Tokenize Aggregate

Split the text into words
For each word emit (word)

Collect running totals.
Once everything is finished,
emit all pairs of (word, count)

We can parallelise the execution of the vertices by
introducing concurrent queues between the vertices.

© 2018 Hazelcast Inc.

(word)

(wo
rd)

Sink
(word, count)

Aggregate

By dividing the text into lines, and having multiple threads,
each tokenizing vertex can process a separate line thus

parallelizing the work.

(lin
e)

(line)

Source

Tokenize

Tokenize

© 2018 Hazelcast Inc.

(word)

(word)

(word, count)

(word, count)

(lin
e)

(line)

Source Sink

Tokenize

We only need to ensure the same words
go to the same Aggregator.

Aggregator can also be executed in parallel by
partitioning by the individual words.

Tokenize

Aggregate

Aggregate

© 2018 Hazelcast Inc.

Node

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

Node

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

© 2018 Hazelcast Inc.

Performance

© 2018 Hazelcast Inc.

Throughput

© 2018 Hazelcast Inc.

Latency

© 2018 Hazelcast Inc.

Hazelcast Jet Architecture

© 2018 Hazelcast Inc.

Job Execution

• Pipeline is converted to a DAG with vertices and edges.

• The graph is distributed to the whole cluster. Each node will run the whole graph

• Each vertex corresponds to one or more Processor instances which parallelize
the work.

• Starting from source vertices, data flows along the edges, backed by concurrent
queues and eventually ends up in one or more sinks.

© 2018 Hazelcast Inc.

Processors

• Executes the main business logic for each vertex,
typically taking some input and emitting some output

• Can be stateful (aggregation) or stateless (mapping)

• Sources and sinks are also processors, with the
difference that they act as initial or terminal vertices.

• Jet provides processors for most common operations
which cover most of the use cases: grouping, mapping,
filtering

© 2018 Hazelcast Inc.

Cooperative Multithreading

• All execution is done through tasklets, such as network IO,
processors and snapshotting.

• Similar concept to green threads

• Tasklets run in a loop serviced by the same native thread.
- No context switching.
- Almost guaranteed core affinity

• Each tasklet does small amount of work at a time (<1ms)

• Cooperative tasklets must be non-blocking.

• Each native thread can handle thousands of cooperative tasklets

• If there isn’t any work for a thread, it backs off

© 2018 Hazelcast Inc.

Cooperative Multithreading

• Edges are implemented by lock-free single producer, single
consumer queues
- It employs wait-free algorithms on both sides and avoids
volatile writes by using lazySet.

• Load balancing via back pressure

• Tasklets can also be non-cooperative, in which case they have a
dedicated thread and may perform blocking operations.

© 2018 Hazelcast Inc.

Producer
Tasklet 3

Producer
Tasklet 4

Producer
Tasklet 4

Producer
Tasklet 2

Consumer
Tasklet 2

Consumer
Tasklet 1

Producer
Tasklet 4

Producer
Tasklet 2

Producer
Tasklet 1

Consumer
Tasklet 2

Consumer
Tasklet 1

Producer
Tasklet 1

Consumer
Vertex

Producer
Vertex

Edge

Parallelism=4

Output of Producer Vertex is
connected to input of
Consumer Vertex by

configuration of the Edge.

Thread 1 Thread 2

Execution Service

Tasklets – Unit of Execution

Parallelism=2

© 2018 Hazelcast Inc.

APIs

Pipeline API – High level, Expressive, Type-safe

Pipeline p = Pipeline.create();
p.drawFrom(Sources.<Long, String>map(“lines”))
.flatMap(e -> traverseArray(delimiter.split(e.getValue().toLowerCase())))
.filter(word -> !word.isEmpty())
.groupingKey(wholeItem())
.aggregate(counting())
.drainTo(Sinks.map(“counts”));

DAG API – Low level, verbose
DAG dag = new DAG();
Vertex source = dag.newVertex("source", readMapP(DOCID_NAME));
Vertex docLines = dag.newVertex("doc-lines",

nonCooperativeP(flatMapP((Entry<?, String> e) -> traverseStream(docLines(e.getValue()))))
);
Vertex tokenize = dag.newVertex("tokenize",

flatMapP((String line) -> traverseArray(delimiter.split(line.toLowerCase()))
.filter(word -> !word.isEmpty()))

);
dag.edge(between(source, docLines))

.edge(between(docLines, tokenize))
…

© 2018 Hazelcast Inc.

Windowing

• Makes it possible to do aggregations on a stream of events

• Count based – every 100 events

• Tumbling – discrete windows – e.g. every minute

• Sliding – overlapping – e.g. every minute, sliding by 1 sec

• Session – dynamically sized – i.e. activity of a single user

© 2018 Hazelcast Inc.

Watermarks

• Event time is not the same as wall clock time

• How do you order a disordered stream?

• Time advances only with events, not with wall clock

• You are only as ahead as the stream that is most behind.

• Allowed lag controls allowed out of orderness

• What happens to “late events” ?

© 2018 Hazelcast Inc.

Fault Tolerance

• Streaming jobs can be running for a long time! How to
ensure correctness?

• Hazelcast IMDG provides an in-memory storage which is
partitioned and replicated

• Jet uses this storage to keep snapshots of processor states

• If one of the nodes fails, the job can be restarted and the
processor can resume where it left off.

• It’s not that simple: you still need to coordinate the states of
different steps in the computation: Distributed snapshots

© 2018 Hazelcast Inc.

Distributed Snapshots

• Need to coordinate snapshots happening between different
vertices in the graph.

• This is achieved by injecting an item into the stream called a
snapshot barrier.

• Exactly-once vs at-least-once behaviour is determined by
how the barrier is treated.

© 2018 Hazelcast Inc.

Flight Telemetry
https://github.com/hazelcast/hazelcast-jet-demos

© 2018 Hazelcast Inc.

Demo Applications

Real-time Image Recognition Twitter Cryptocurrency Sentiment Analysis
Recognizes images present in the webcam video

input with a model trained with
CIFAR-10 dataset.

Twitter content is analyzed in real time to calculate
cryptocurrency trend list with popularity index.

Real-Time Road Traffic Analysis
And Prediction

Real-time Sports Betting Engine

Continuously computes linear regression models
from current traffic. Uses the trend from week ago

to predict traffic now

This is a simple example of a sports book and is a
good introduction to the Pipeline API.

It also uses Hazelcast IMDG as an in-memory data
store.

Flight Telemetry Market Data Ingest
Reads a stream of telemetry data from ADB-S on all
commercial aircraft flying anywhere in the world.

There is typically 5,000 - 6,000 aircraft at any point
in time. This is then filtered, aggregated and certain

features are enriched and displayed in Grafana.

Uploads a stream of stock market data (prices) from
a Kafka topic into an IMDG map. Data is analyzed as
part of the upload process, calculating the moving
averages to detect buy/sell indicators. Input data
here is manufactured to ensure such indicators
exist, but this is easy to reconnect to real input.

Markov Chain Generator Real-Time Trade Processing
Generates a Markov Chain with probabilities based

on supplied classical books.
Processes immutable events from an event bus

(Kafka) to update storage optimized for querying
and reading (IMDG).

https://jet.hazelcast.org/demos/real-time-image-recognition/
https://jet.hazelcast.org/demos/cryptocurrency-realtime-trend/
https://jet.hazelcast.org/demos/online-training-traffic-predictor/
https://jet.hazelcast.org/demos/jet-leopard/
https://jet.hazelcast.org/demos/flight-telemetry/
https://jet.hazelcast.org/demos/market-data-distributor/
https://jet.hazelcast.org/demos/markov-chain-generator/
https://jet.hazelcast.org/demos/real-time-trade-processing/

© 2018 Hazelcast Inc.

Hazelcast Jet

44

• High Performance | Industry Leading Performance

• Works great with Hazelcast IMDG | Source, Sink, Enrichment

• Very simple to program | Leverages existing standards

• Very simple to deploy | embed 10MB jar or Client Server

• Works in every Cloud | Same as Hazelcast IMDG

• For Developers by Developers | Code it

© 2018 Hazelcast Inc.

Roadmap

© 2018 Hazelcast Inc.

2018 Jet Roadmap Highlights

Features Description

Management Center Management and monitoring features for Jet.

Job Elasticity Scaling up running jobs automatically

Rolling Job Upgrades Make changes to running jobs and restart them

Kotlin API Coroutines support

© 2018 Hazelcast Inc.

Questions?
Version 0.6.1 is the current release with 0.7 coming in October

aiming for 1.0 this year

http://jet.hazelcast.org

https://github.com/hazelcast/hazelcast-jet-demos/

