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Agenda

• Apache Ignite Clients
• Data interoperability in Ignite
• Binary Client Protocol
• Cross-platform deployment demo
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Clients and Servers

• Server nodes
• Participate in caching
• Compute jobs execution
• Stream processing
• etc.

• Client nodes
• Provide ability to connect to server nodes
• Client nodes are primarily used to run Native (aka Thick) clients
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Native (aka Thick) Clients

• Have access to the full set of the Ignite APIs
• Near caching 
• Transactions
• Compute
• Streaming
• Services
• etc.

• Require the server nodes to exist in the topology
• Server mode discovery can weaken this requirement

• Other requirements to keep in mind
• Client application should handle reconnects (can have a new ClusterNode id)
• Server should manage the outbound traffic to the “slow” clients
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Thin Clients

• Connect to clusters via a socket connection
• Connects to a specific “proxy” server node
• Sends all cache requests to the proxy, which re-routes data to the right server

• Does not require a client node to be run
• Does not become a part of the topology
• Can’t run the compute jobs
• Use the Binary Client Protocol for communication with server nodes
• Can be implemented in any programming language
• Thin Clients to be released in Apache Ignite v2.7

• C++
• Node.js
• Python
• PHP
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Data Interoperability
BinaryObject format

• BinaryObject – cross-platform format for objects serialization
• Allows for arbitrary field access from serialized form
- No need to have key/value type implementations on the server side

• Allows to dynamically modify object structures 
- Might be useful to support multiple object type versions

• Allows to construct objects based on type name
- Dynamic type construction

• Supports SQL queries

• BinaryObject Limitations
• Fields or types with the same name hash are not allowed
- Applicable to all the levels of class hierarchy 

• Only default binary marshaller can be used
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Binary Objects: Best Practices

• Zero Downtime Principle
• No need to keep object classes on the server nodes thanks to the binary format
• Use BinaryObjectBuilder and BinaryObject wrappers to access data on the servers

• Reduce Space Consumption With Serialization Tuning 
• Use BinaryRawWriter for more compact fields serialization, if you don’t need them in 

the SQL requests – footprint optimization
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Binary Thin Client Protocol

• Allows Thin Client applications to interact with a cluster
• Application connects to a “proxy” server node via a socket connection

• Connectivity issues should be handled on the client side

• Defines the format of client-server connection handshake
• Verification that client and server versions match
• Credentials exchange and authentication (optional)

• Defines the format of data/messages
• Little-endian byte ordering
• Header and body format
• Request and response format

• Is based on the BinaryObject format for data representation
• Keys, values, complex objects
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Binary Client Protocol (cont.)

• Client operations
• Key-Value operations
• SQL and scan queries
- Scan with filters may be limited at this point

• Binary-type operations
• Cache configuration operations



10

Cross-Platform Deployment Demo

• Apache Ignite cluster running on an AWS instance
• 4 different platforms share the same data set

• Real-time data pushed from the Electric Imp Explorer Kit
• Data processing with sample PHP, Python and Node.js Thin Client applications

• Cross-platform and Cross-APIs operations
• Key-value primitive type put/get
• Complex binary objects manipulation
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AWS Cloud

Demo Architecture

Electric Imp Explorer Kit

Raw Data

PHP Thin Client

Processed Data

Python Thin Client

Node.js Thin Client

Humidity

Temperature

REST
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Thank You!

Questions?
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Useful Links

• https://apacheignite.readme.io/docs/clients-vs-servers
• https://apacheignite.readme.io/docs/binary-marshaller
• https://apacheignite.readme.io/docs/binary-client-protocol
• https://apacheignite.readme.io/docs/thin-clients
• https://apacheignite.readme.io/docs/rest-api
• https://developer.electricimp.com/hardware/resources/reference-
designs/explorerkit

https://apacheignite.readme.io/docs/clients-vs-servers
https://apacheignite.readme.io/docs/binary-marshaller
https://apacheignite.readme.io/docs/binary-client-protocol
https://apacheignite.readme.io/docs/thin-clients
https://apacheignite.readme.io/docs/rest-api
https://developer.electricimp.com/hardware/resources/reference-designs/explorerkit

