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Ultra-Low latency = 200 ns

Speedment



5

Why Are Applications Slow?

• Slow Databases

• Data on Several Nodes and no Affinity Across Data

• Data is Remote

• Unnecessary Object Creation / Garbage Collect Problem

• Lack of Parallelism
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Why Are Applications Slow?
Slow Databases

Data grows exponentially, which clogs systems
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Why Are Applications Slow?
Several Nodes/no Affinity Across Data

Scale Out

Low Latency Low Affinity
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Why Are Applications Slow?
Several Nodes/no Affinity Across Data
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Why Are Applications Slow?
Several Nodes/no Affinity Across Data
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Why Are Applications Slow?
Several Nodes/no Affinity Across Data

Scale Out

Low Latency Low Affinity
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Why Are Applications Slow?
Data is Remote: Laws of Nature

45 ms

25 us

100 us
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Why Are Applications Slow?
Data is Remote: Operating System

1-3 us

Linux Kernel

Process
Process

Process

Process
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Why Are Applications Slow?
Unnecessary Object Creation

1 s
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Why Are Applications Slow?
Unnecessary Object Creation

0000 EA B6 08 E2 02 01 00 00 01 A9 AA FF FF FE 00 01
0010

To write a single Java object to main memory takes 200 ns

Conclusion: Creating shared objects -> not ultra-low latency

Speedment
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Why Are Applications Slow?
Lack of Parallelism
$ nproc –all
32

$ top

PID USER     %CPU  %MEM
2105 java    100.0   5.4

1 root 0.5   0.4

Speedment



The Solution: In-JVM-Memory
What is That?
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In-Memory vs. In-JVM-Memory

In-Memory

• Data is in RAM

• The application is
remotely connected to a 
grid, other machine, 
other process

In-JVM-Memory

• Data is in RAM

• The application and 
data resides in the same
JVM

Application

Speedment
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In-JVM-Memory Makes
Ultra Low Latency Possible
• CPU Cache Latencies:

• L1 ~0.5 ns

• L2 ~7 ns

• L3 ~20 ns

• 64-bit Main Memory Read ~100 ns

Speedment
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In-JVM-Memory vs. In-Memory Performance
Speedment

In-JVM-Memory



In-JVM-Memory Scalability
Is That Even Possible?
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Scaling up In-JVM-Memory
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Scaling up In-JVM-Memory

Today: Scale up to 12 TB (Intel® Xeon® Processor E7-8855 v4 * 4)

Soon: Scale up to 48 TB

Speedment
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• Increase Memory in the Cloud as You Grow
Speedment
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Is Scale Up Cost Effective?

General Belief Fact

Speedment
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What if I Have More Than 12 TB? 

• Use in-JVM-memory solution as an
add on for your current solution for
part of your data

• High Level Sharding

• Per year, region, segment
12 TB 12 TB 12 TB

America EMEA Asia

Speedment

• Memory Mapping (e.g. IMDT) 12 TB 24 TB
RAM SSD

12 TB
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What if My Data Grows?
Speedment
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In-JVM-Memory vs. In-Memory Performance
Speedment

Data with 75% correlation
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Recap: Impossible to Scale Out AND Get
Low Latency When You Have Low Affinity

Scale Out

Low Latency Low Affinity

Scale Up
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Solution: In-JVM Memory

Scale Up

Low Latency Low Affinity

In-JVM
Memory

Speedment



In-JVM-Memory Solution:
Speedment
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Speedment: In-JVM-Memory DataStore

• Continuously creates data snapshots from 
a data source

• Places the copy within the JVM JVM

• Supports off-heap joins and aggregations
• Can operate without creating intermediary objects

• Off-Heap Data
• Off-Heap Indexing
• No Impact on Garbage Collect

Speedment
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Speedment API: Java Stream ORM

java.util.stream.Stream

Speedment
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Speedment API: Java Stream ORM
Speedment
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Declarative Constructs in SQL and Stream

SELECT * FROM FILM 
WHERE RATING = ‘PG-13’

films.stream()
.filter(Film.RATING.equal(Rating.PG13))

Speedment API: Java Stream ORM
Speedment
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Speedment Can Process Data without
Creating Intermediate Objects

films.stream()
.filter(Film.RATING.equal(Rating.PG13))
.count();

Speedment
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Speedment Can Process Data without
Creating Intermediate Objects

films.stream()
.filter(Film.RATING.equal(Rating.PG13))
.collect(toJsonLengthAndTitle()));

Speedment
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Speedment: Off-Heap Joins/Aggregations

var join = joinComponent
.from(FilmManager.IDENTIFIER)
.innerJoinOn(Language.LANGUAGE_ID).equal(Film.LANGUAGE_ID)
.build(Tuples::of);
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Speedment: Off-Heap Joins/Aggregations

var offHeapAggregator = Aggregator.builder(Result::new)
.on(Language.LANGUAGE_ID).key(Result::setLanguage)
.on(Film.RATING).key(Result:setRating)
.on(Film.LENGTH).average(Result::setAverage)
.build();

Speedment
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Speedment:Off-Heap Joins/Aggregations

var result = join.stream()
.collect(offHeapAggregator);

Speedment
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Speedment: Parallel Processing

join.stream()
.parallel()
.collect(offHeapAggregator);

Speedment
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Speedment: Parallel Processing

$ nproc –all
32

$ top

PID USER     %CPU  %MEM
2107 java   3170.0   5.4

1 root 0.5   0.4

Speedment



Hands on Demo
Seeing is Believing

Speedment
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Demo
Speedment

@Benchmark
public long filterAndCount() {

return films.stream()
.filter(RATING_EQUALS_PG_13)
.count();

}
1

2

JVM
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Demo: Download Sakila Demo Database
Speedment
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Demo: Initialize the Project 
Speedment
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Demo: Connect to the Sakila Database
Speedment
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Demo: Generate the Domain Model
Speedment



Use Existing Infrastructure
How does it Fit with What We Have?
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Easy Integration: Any Data Source
Speedment
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Deploy Anywhere
Speedment
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IDE Integration
Speedment
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Web Service Integration
Speedment
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Thanks

Trial License? Contact:

Per Minborg
minborg@speedment.com

www.speedment.com/initializer

github.com/speedment/speedment

Speedment
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Speedment Can Process Data without
Creating Intermediate Objects

films.stream()
.filter(Film.RATING.equal(Rating.PG13))
.collect(toJsonLengthAndTitle()));

index film_id length rating year language title
[0] 0 267 267 0 0 0
[1] 267 0 0 267 267 267
[2] 523 523 523 523 523 523

index film_id
0

length
4

rating
12

year
16

language
20

Title
…

[0] 1 123 PG-13 2006 1 ACAD..
[267] 2 69 G 2006 1 ACE G…
[523] 3 134 PG-13 2006 1 ADAP…


