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Want extreme performance at scale?
Do distributed the RIGHT way! 

Valentin Kulichenko
Apache Ignite Committer
GridGain Solutions Architect
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Where Is The Challenge?
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Data Affinity
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Where Entry Goes?

Ignite Node 1 Ignite Node 2

put (key, value)

? ?
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Caches and Partitions
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Partitions Distribution
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Affinity Function

Key Partition
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Where Entry Goes?

Ignite Node 1 Ignite Node 2

put (key, value)
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Co-located Processing
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1. Initial Request
2. Fetch data from remote nodes
3. Process entire data-set
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3. Reduce multiple results in one
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Use Case: Account Balance Update

class Account {
String firstName;
String lastName;
String address;

...

double balance;
}

Account account = cache.get(123);

account.balance -= 100;

cache.put(123, account);
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Use Case: Account Balance Update

cache.invoke(123, new EntryProcessor<Integer, Account, Object>() {
@Override public Object process(MutableEntry<Integer, Account> entry,

Object... args) {
Account account = entry.getValue();

account.balance -= 100;

entry.setValue(account);

return null;
}

});
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Co-located Data
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Use Case: Payment Transaction Authorization

class Transaction {
int accountId;
String storeName;
double amount;

}

For each new transaction:
• Find all transactions for the account ID
• Go through the list, calculate authorization 

variables
• If transaction is authorized, add it to the list
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Affinity Key

Key Partition
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Affinity Key
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Affinity Key

class TransactionKey {
int transactionId;

@AffinityKeyMapped
int accountId;

}

ignite.compute().affinityRun(
"transactions", // Cache name.
123,            // Account ID.
() -> { ... }   // Computation.

);
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Co-location and SQL: Indexing
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Let’s Run a SQL Query!

SELECT AVG(amount) FROM Transaction WHERE accountId = ?
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Executing SQL: Full Scan

• 1/3x latency
• 3x capacity
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But What If We Use Index?
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Indexed Search Complexity

log 1_000_000 ≈ 20log 1_000_000 ≈ 20
vs.

log   333_333 ≈ 18
log   333_333 ≈ 18
log   333_333 ≈ 18
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Executing SQL: Indexed Search

• ~same latency
• ~same capacity
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Let’s Co-locate

SELECT AVG(amount) FROM Transaction WHERE accountId = ?
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Executing SQL: Indexed Search With Co-location

• same latency
• 3x capacity
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Co-location and SQL: Joins



© 2017 GridGain Systems, Inc.

Random Distribution
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Non-Collocated Joins

1. Initial Query
2. Query execution (local + remote data)
3. Potential data movement
4. Reduce multiple results in one
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Affinity Collocation
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Collocated Distribution
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Collocated Joins

1. Initial Query
2. Query execution over local data
3. Reduce multiple results in one
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Any Questions?

Thank you for joining us. Follow the conversation.
http://ignite.apache.org

@vkulichenko
#apacheignite


