
© 2017 GridGain Systems, Inc.

Want extreme performance at scale?
Do distributed the RIGHT way!

Valentin Kulichenko
Apache Ignite Committer
GridGain Solutions Architect

© 2017 GridGain Systems, Inc.

Distributed Storage

JCache Transactions Compute SQL

RDBMS

NoSQL

HDFS

Server Node

Distributed Key-Value Store

Dynamic
Scaling

Distributed

partitioned

hash map

ACID TransactionJCache & SQL

Server Node Server Node

3rd party storage caching

DURABLE MEMORY DURABLE MEMORY DURABLE MEMORY

© 2017 GridGain Systems, Inc.

Where Is The Challenge?

© 2017 GridGain Systems, Inc.

Data Affinity

© 2017 GridGain Systems, Inc.

Where Entry Goes?

Ignite Node 1 Ignite Node 2

put (key, value)

? ?

© 2017 GridGain Systems, Inc.

Caches and Partitions

K1, V1

K2, V2
K3, V3

K4, V4

Partition 1

K5, V5

K6, V6

K7,V7

K8, V8 K9, V9

Partition 2

Cache

© 2017 GridGain Systems, Inc.

Partitions Distribution

Ignite Node 1 Ignite Node 2

0 2 4 6 8

10 12 14

1 3 5 7 9

11 13 15

© 2017 GridGain Systems, Inc.

Affinity Function

Key Partition

Server Node

ON-DISK

© 2017 GridGain Systems, Inc.

Where Entry Goes?

Ignite Node 1 Ignite Node 2

put (key, value)

0 2 4 1 3 5

© 2017 GridGain Systems, Inc.

Co-located Processing

© 2017 GridGain Systems, Inc.

1. Initial Request
2. Fetch data from remote nodes
3. Process entire data-set

3

1

Data 12

2 Data 2

Client-Server Processing Co-located Processing

Server Node

ON-DISK

Server Node

ON-DISK

1. Initial Request
2. Co-located processing with data
3. Reduce multiple results in one

2

2

1Client Node

Server Node

ON-DISK

Server Node

ON-DISK

Client Node

3

© 2017 GridGain Systems, Inc.

Use Case: Account Balance Update

class Account {
String firstName;
String lastName;
String address;

...

double balance;
}

Account account = cache.get(123);

account.balance -= 100;

cache.put(123, account);

© 2017 GridGain Systems, Inc.

Use Case: Account Balance Update

cache.invoke(123, new EntryProcessor<Integer, Account, Object>() {
@Override public Object process(MutableEntry<Integer, Account> entry,

Object... args) {
Account account = entry.getValue();

account.balance -= 100;

entry.setValue(account);

return null;
}

});

© 2017 GridGain Systems, Inc.

Co-located Data

© 2017 GridGain Systems, Inc.

Use Case: Payment Transaction Authorization

class Transaction {
int accountId;
String storeName;
double amount;

}

For each new transaction:
• Find all transactions for the account ID
• Go through the list, calculate authorization

variables
• If transaction is authorized, add it to the list

© 2017 GridGain Systems, Inc.

Affinity Key

Key Partition

Server Node

ON-DISK

© 2017 GridGain Systems, Inc.

Affinity Key

Key Partition

Server Node

ON-DISK

Affinity Key

Account ID

© 2017 GridGain Systems, Inc.

Affinity Key

class TransactionKey {
int transactionId;

@AffinityKeyMapped
int accountId;

}

ignite.compute().affinityRun(
"transactions", // Cache name.
123, // Account ID.
() -> { ... } // Computation.

);

© 2017 GridGain Systems, Inc.

Co-location and SQL: Indexing

© 2017 GridGain Systems, Inc.

Let’s Run a SQL Query!

SELECT AVG(amount) FROM Transaction WHERE accountId = ?

Server Node

ON-DISK

Server Node

ON-DISK

Server Node

ON-DISK

Server Node

ON-DISK

vs.

© 2017 GridGain Systems, Inc.

Executing SQL: Full Scan

• 1/3x latency
• 3x capacity

© 2017 GridGain Systems, Inc.

But What If We Use Index?

© 2017 GridGain Systems, Inc.

Indexed Search Complexity

log 1_000_000 ≈ 20log 1_000_000 ≈ 20
vs.

log 333_333 ≈ 18
log 333_333 ≈ 18
log 333_333 ≈ 18

© 2017 GridGain Systems, Inc.

Executing SQL: Indexed Search

• ~same latency
• ~same capacity

© 2017 GridGain Systems, Inc.

Let’s Co-locate

SELECT AVG(amount) FROM Transaction WHERE accountId = ?

Server Node

ON-DISK

Server Node

ON-DISK

Server Node

ON-DISK

© 2017 GridGain Systems, Inc.

Executing SQL: Indexed Search With Co-location

• same latency
• 3x capacity

© 2017 GridGain Systems, Inc.

Co-location and SQL: Joins

© 2017 GridGain Systems, Inc.

Random Distribution

Ignite Node

Canada
Toronto

Calgary

Mumbai

Ignite Node

India
Montreal

Ottawa

New Delhi

© 2017 GridGain Systems, Inc.

Non-Collocated Joins

1. Initial Query
2. Query execution (local + remote data)
3. Potential data movement
4. Reduce multiple results in one

1

2

24

3
Montreal

Ottawa

Ignite Node

Canada
Toronto

Calgary

Mumbai

Ignite Node

India
Montreal

Ottawa
New Delhi

Mumbai

© 2017 GridGain Systems, Inc.

Affinity Collocation

Country

City

Server Node

ON-DISK

Server Node

ON-DISK

key (countryId = 5)

key (cityId = 10, countryId = 5)

key (cityId = 11, countryId = 9)

© 2017 GridGain Systems, Inc.

Collocated Distribution

Ignite Node

Canada
Toronto

Ottawa
Montreal

Calgary

Ignite Node

India Mumbai

New Delhi

© 2017 GridGain Systems, Inc.

Collocated Joins

1. Initial Query
2. Query execution over local data
3. Reduce multiple results in one

Ignite Node

Canada
Toronto

Ottawa
Montreal

Calgary

Ignite Node

India Mumbai

New Delhi

1

2

23

© 2017 GridGain Systems, Inc.

Any Questions?

Thank you for joining us. Follow the conversation.
http://ignite.apache.org

@vkulichenko
#apacheignite

