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CachePhysics

Data Path Monitoring and Modeling Software
Real-time Predictive Modeling of Data Access Patterns
Increasing Performance & Cost Efficiency of Existing Caches
Powering Next-Generation Self-Learning Caches
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In-Memory Computation is Hard

~Data...
changing.. ...

QoS ....hard
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Data Path Getting More Complex

.problems..
getting....
WOrS e with increasing hardware

complexity
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Data Path Performance is Critical

Yet... : .
Intelligent Management is Non-

Existent

* s this performance good?
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Distributed Platform

&
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* (Can performance be improved?
* How much Cache for App Avs B vs ...?

* What happens if [ add / remove
DRAM?

* How much DRAM versus Flash?
* How to achieve 99%ile latency of X ps?

Performance .
Hit Ratio 65% e What if [ add / remove workloads?
Cache Size 128 GB * s there cache thrashing / pollution?
99.5%ile Latency  16.7 ms « What if I change cache parameters?
In-Memory
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Algorithms to the Rescue

Performance '1\
65% -

Hit Ratio
Cache Size 128 GB

Latency (ms)

99.5%ile Latency 16.7 ms

Learn performance model of applications
and cache

Predict the performance of workload as 0 42 84 128 170
f(memory size, params) Memory (GB)
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Understanding Performance Models

Lower is better

- _\
X X

Decide useful
increments of change.

Latency (ms)
2

0 42 84 128 170
- o [in]en
Memory Size (GB) NJSomputing | s,
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Understanding Performance Models (2)
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Lower is better

Latency (ms)
2

42 84

Memory Size (GB)

128

170

The only 3 efficient
operating points for
this workload.

Note: most operating

points are highly
inefficient.
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Production Workload Performance
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Workload Behavior: Highly Dynamic

High Velocity Workload Low Velocity Workload

1.0 1.0
Tdtal requests: 16400000 Total requests: 67200000
CJrrent cache size: 60GB (0.50) Current cache size: 60GB (0.53)
SUO required size: 2.09GB (0.50 SLO required size: 74.26GB (0.5Q)
0.8 4 optimal cache size: 6.0GB (0.31 0.8 4 Optimal cache size: 94.0GB (0.26)
o 0.6 ° 0.6 1
@ e e B SLO target: 0.5 I e S S L VA—— . SLO target: 0.5
] ]
Z 0.4 Z 0.4
0.2 1 0.2 1 )
—— SLO Requirement —— SLO Requirement
—— Optimal Efficiency —— Optimal Efficiency
0.0 +—t : : : - : 0.0 : ; : : ;
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Cache Size (GB) Cache Size (GB)
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Use Case: Achieving Latency Targets

20
] Latency
1 Target (7 ms)
n 15 4
N /
>
Q
5 ]
= 10 - Cache
f) ! Allocation
—_— | 1
'O\T: Client target 95 %ile latency is 7 ms ' (>16 GB)
T e e i s Sy M Mt B B 1
L 5] i
i
Autoset cache partitions size to 16GB to i
] guarantee avg latency SLOs ! * Throughput targets
0 H S S U S R M N N — can be implemented
0 5 10 15 | 20 similarly
. 1 -
Memory Size (GB) i 11 [I:ln Compunng o
SUMMI T 208

© 2018 CachePhysics. All rights reserved.



Use Case: Memory Thrash Remediation

— Original — SLIDE - -- Convex Hull
LIRS - msr_srct LRU - msr_web ARC - msr_web
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Use Case: Multi-Tier Sizing

| Tier 0 (DRAM) allocation Network
Tier 1 (3D Xpoint) Misses
Tier 2 (Local Flash) |
iTier 3 (Remote
\Z iFlash)

* Can model
network bandwidth
as a function of
cache misses from
each tier

J
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Use Case: Per-App Memory Pools

* |Improve aggregate cache
performance

* Allocate memory based on
benefit

* Prevent inefficient
utilization / thrashing

« Adapt to changing
workload behavior

Client Allocation

Part. 0 Part. 1

.
:¥ VS \L

Client 0 Client 1
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SLA Violation

Recommendation: increase DRAM Memory
This application has a performance SLA
than can no longer be achieved due to a
change in the workload
The current size of 325 GB should be

increased to: 650 GB

Miss Ratio

SLA Risk: Application Workload Shifting

Warning: The working set profile of this
application has changed by more than 10%.
FaIg e e S S~ This application is still within it's SLAbut it is
50% closer to a violation than before.
The Miss Ratio Curve started to change
on Nov 7, 2017. Contact the developers.

Miss Ratio

Current

Features

» Self-learn predictions for each client

* Alert, recommendations
Recommendation/SLA API

Capacity planning, what-ifs

Cost Saving Recommendation

Warning: This application is not benefitting
from most of the DRAM allocated to it.
Suggest reducing DRAM down from 350GB
down to: 90 GB.

The new size is within 5% of the performance

0. {J ecomemendea Curneen || but with 75% cheaper!

s cseh B sched In-Memory
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Architecture

Apps & Microservices SaaS API

Calls

1 =

=& —&

B=0—@

Keep Existing
Applications

Open Source
P O — |

Instrumentation Plugins .

P i
'l /a8 @ API

Callbacks

Caches

Persistent Stores — Database, Filesystem

={ = =L =
= =
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Keep Existing
Data Infrastructure

Enforce SLA
Optimize

Monitor
o Monitor x-

4 Predict ()

Model O

Control O
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Finally

Takeaways

Tech breakthrough for In-memory
Computing

« Optimal cost, same performance
« World 1st/only latency SLOs

« Self-tuning data path

« Auto-scaling data paths

Award-winning technology

© 2018 CachePhysics. All rights reserved.

Asks

New Customer Projects

50% Efficiency Gain
Guarantee!

Latency SLO guarantee
In-memory compute

Database, Key-Value store,
Filesystem, Disk system
Optimization
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CachePhysics

650-417-8559  @virtualirfan
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