

Cloud Adjacent Databases Facilitate Migration to Cloud

Chris Jenkins Senior Director, In-Memory Technology, Oracle June 2019

Agenda

- Cloud migration challenges
- How can Cloud Adjacent Databases help? 2
- What is Oracle TimesTen In-Memory Database? 3
- 4 TimesTen as a Cloud Adjacent Database
- Example use cases 5
- Summary
- 7 Q & A

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Terminology

- Multi Cloud environment
 - An application, system, or service is deployed across, or uses resources from, multiple independent clouds
- Hybrid environment
 - An application is deployed on, or uses resources from, both on-premises and cloud environments
- Edge computing
 - A distributed computing paradigm where compute resources , including storage, are brought closer to the location where they are needed. The opposite of Cloud computing. (paraphrased from Wikipedia)

Cloud migration challenges

- Many challenges with migrating applications from on-premises to the Cloud
 - Architecture
 - Performance; network bandwidth and latency
 - Approach; piece-meal, all-at-once, hybrid
- Typical round-trip network latencies
 - Within a data centre: sub millisecond
 - Outside world to/from a Cloud: 10s of milliseconds
- Heavily database dependent applications and latency sensitive applications are often the most challenging
 - If apps and database are not co-located, performance will suffer
 - During migration (and maybe afterwards) co-location is not always possible => hybrid environment
 - A hybrid environment may be needed long term (or even forever)

Cloud Migration

What are Cloud Adjacent Databases?

- A simple notion
 - Put a (lightweight) database 'close' to the application (in terms of network latency)
 - Containing the key data needed by the application
 - Synchronise this 'local' data with the main database asynchronously (in the background)
- Which
 - Reduces network latency for application access to its data
 - Offloads work from the main database
- Leading to
 - Faster and more predictable application responsiveness
 - Improved reliability
- A concrete example of edge computing / edge databases

Hybrid without Cloud Adjacent Databases

Min request latency: (2 * A) + (2 * B)

Hybrid with Cloud Adjacent Databases

Min request latency: (2 * A) + (2 * C) C <<< B

Characteristics of a Cloud Adjacent Database

- Lightweight, easy to deploy and easy manage
 - Little or no DBA oversight required
- Highly compatible with central database
 - SQL, APIs, transactions, ...
- Good performance
 - To maximise the performance benefits
- Persistent and recoverable, maybe highly-available
 - To protect data
 - To offer increased resilience

Oracle In-Memory Database Technologies

- 5-10x faster smart scan in storage
- 15x increase in total columnar capacity

Oracle TimesTen In-Memory Database Multiple Deployment Options

TimesTen Classic

- 1. Standalone / Replicated Relational IMDB
 - Low latency applications
 - ISV/OEM Embedded solutions
- 2. Cache for Oracle Database
 - Accelerate Oracle Database applications
 - HA option via Replication

Microsecond response time, millions of TPS

TimesTen Scaleout

- 3. Distributed Relational IMDB
 - High throughout and storage capacity
 - Transparent data distribution
 - Elastic scalability
 - Fault tolerant

Millisecond response time, hundreds of millions of TPS

TimesTen Classic

Relational Database

- Pure in-memory
- ACID compliant
- Standard SQL, PL/SQL, APIs
- Entire database in RAM

Persistent and Recoverable

- Database and Transaction logs persisted on local disk or flash storage
- Automatic recovery after failure

ORACLE'

TimesTen

Extremely Fast

- Microseconds response time
- Very high throughput

Highly Available

- Active-Standby and multi-master replication
- Very high performance parallel replication
- HA and Disaster Recovery

Performance – Response Time Low Latency - <u>Microseconds</u> Response Time

TimesTen Application-Tier Database Cache For Oracle Database

- Cache subset of Oracle Database tables in TimesTen for better response time
 - With full persistence to local storage
- Read-write caching
 - Transaction execution and persistence in TimesTen
- Read-only caching
 - Transactions executed in Oracle Database
- Same architecture as TimesTen Classic
 - Supports cache tables and native TimesTen tables
- HA and fault tolerance in the application-tier
- Highly compatible with Oracle database
 SQL, PL/SQL, APIs, ...

Flexible Cache Group Configurations

- Cache Group describes the Oracle Database tables to cache All or subset of rows and columns Defined using SQL **CREATE CACHE GROUP PremierUsers** FROM OE.CUSTOMER (NAME VARCHAR2(100) NOT NULL, ADDR VARCHAR2(100) WHERE OE.CUSTOMER.ORDER > 500;
- Cache tables are regular tables in TimesTen
 - Queries/joins, insert/update/delete

TimesTen Scaleout

Shared nothing distributed IMDB built on proven TimesTen technology

Single Image In-Memory Database

ORACLE

- For High-Velocity **Extreme OLTP** applications
 - IOT, trading, fraud detection, mobile, click stream, billing, orders, etc.

Cutting-Edge Design

- Pure In-Memory, Full SQL, Full ACID Transactions
 - Scale-out shared nothing architecture
 - Multiple data copies for HA (K-safety)
 - -All copies active for read/writes
 - Global secondary indexes
- Complex SQL and Parallel SQL for reporting and batch
- Centralized management and administration

YCSB Workload B (95% Read 5% Update): 38 Million TPS

TimesTen as a Cloud Adjacent Database

- TimesTen Classic/Cache is a great fit as a Cloud Adjacent Database
 - Lightweight, simple to deploy and manage
 - No DBA required
 - Standard SQL, PL/SQL, APIs
 - Persistent and recoverable, HA
- High performance
 - True in-memory architecture optimised for low latency
 - High performance high-availability
- Data synchronisation
 - If backend DB is Oracle, use built in caching features for 'out of the box' data sync
 - APIs such as XLA (log mining & event notification) enable 'roll your own' data sync

Example use case #1: Navigation, traffic alerts, parking info

- Large Japanese automotive manufacturer
- Need to
 - Capture real-time information from vehicle sensors and systems
 - Process and enhance data
 - Share with other apps & vehicles
 - Push new/updated data to vehicles
- Must haves
 - Acceptable performance
 - High resiliency

Example Use Case #1: Data Flows

- Vehicles interact with a 'nearby' RIS to exchange data
 - GPS derived data (position, speed, heading)
 - Any other sensor data required by application(s)
- Roadside Interaction System
 - Filters, summarises, aggregates, analyses
 - Syncs some of this data with central (Cloud hosted) database
- Central (Cloud hosted) database and apps
 - Main data repository and processing centre
 - Has the 'bigger picture' performs higher level processing
 - Sends required data back to vehicles via RIS

Example use case # 2: Cache for Oracle ATP Cloud Service

- ATP Cloud Service offers incredible performance
- But it is still a cloud service
 - High network latency if used in hybrid deployments
 - May be impacted by network issues
- Deploy TimesTen Cache as an on-premises CADB to improve hybrid deployments
- Deploy a TimesTen Cache Service for fully cloud based deployments

Example use case # 2: Cache for Oracle ATP Cloud Service

Example use case # 2: Cache for Oracle ATP Cloud Service

Summary

- Migration to Cloud can present risks
 - Maintaining performance and reliability is often one of them
 - Particularly for hybrid deployments
- Cloud Adjacent Databases can help with this for some applications
 - $-\,$ Better performance and reliability
 - More complex architecture
- In-memory databases are often ideal as Cloud Adjacent Databases
 - Data volumes are typically low to medium
 - Lightweight footprint with little or no administration required
 - Excellent performance on low cost hardware
- Data synchronisation is a key aspect
 - Cloud Adjacent Databases usually needs to sync some data with a central database
 - Data sync needs to be flexible, fast and reliable

Cloud Adjacent Databases Facilitate Migration to Cloud

Chris Jenkins Senior Director, In-Memory Technology, Oracle June 2019