Cloud Adjacent Databases Facilitate Migration to Cloud

Chris Jenkins
Senior Director, In-Memory Technology, Oracle
June 2019
Agenda

1. Cloud migration challenges
2. How can Cloud Adjacent Databases help?
3. What is Oracle TimesTen In-Memory Database?
4. TimesTen as a Cloud Adjacent Database
5. Example use cases
6. Summary
7. Q & A
Terminology

• Multi Cloud environment
 – An application, system, or service is deployed across, or uses resources from, multiple independent clouds

• Hybrid environment
 – An application is deployed on, or uses resources from, both on-premises and cloud environments

• Edge computing
 – A distributed computing paradigm where compute resources, including storage, are brought closer to the location where they are needed. The opposite of Cloud computing. *(paraphrased from Wikipedia)*
Cloud migration challenges

- Many challenges with migrating applications from on-premises to the Cloud
 - Architecture
 - Performance; network bandwidth and latency
 - Approach; piece-meal, all-at-once, hybrid

- Typical round-trip network latencies
 - Within a data centre: sub millisecond
 - Outside world to/from a Cloud: 10s of milliseconds

- Heavily database dependent applications and latency sensitive applications are often the most challenging
 - If apps and database are not co-located, performance will suffer
 - During migration (and maybe afterwards) co-location is not always possible => hybrid environment
 - A hybrid environment may be needed long term (or even forever)
Cloud Migration

On premises

Migration

Cloud
What are Cloud Adjacent Databases?

• A simple notion
 – Put a (lightweight) database ‘close’ to the application (in terms of network latency)
 – Containing the key data needed by the application
 – Synchronise this ‘local’ data with the main database asynchronously (in the background)

• Which
 – Reduces network latency for application access to its data
 – Offloads work from the main database

• Leading to
 – Faster and more predictable application responsiveness
 – Improved reliability

• A concrete example of edge computing / edge databases
Hybrid without Cloud Adjacent Databases

Min request latency: \((2 \times A) + (2 \times B)\)
Hybrid with Cloud Adjacent Databases

Min request latency: \((2 \times A) + (2 \times C)\)

\(C << B\)
Multi Cloud without Cloud Adjacent Databases
Multi Cloud with Cloud Adjacent Databases

AppA — CADB1 — Internet — CADB2 — AppB — CADB3

DB1
DB2
DBA
DBB
Characteristics of a Cloud Adjacent Database

• Lightweight, easy to deploy and easy manage
 – Little or no DBA oversight required

• Highly compatible with central database
 – SQL, APIs, transactions, ...

• Good performance
 – To maximise the performance benefits

• Persistent and recoverable, maybe highly-available
 – To protect data
 – To offer increased resilience
Oracle In-Memory Database Technologies

Application-Tier

- **TimesTen In-Memory Database**
 - Latency Critical OLTP applications
 - **Microsecond** response time
 - Standalone or Cache for Oracle Database

Database-Tier

- **Database In-Memory**
 - Dual Format In-Memory Database
 - **Billions of Rows/sec** analytic data processing
 - **2-3x** Faster Mixed Workloads

Storage-Tier

- **In-Memory on Exadata Storage**
 - In-memory column format on Exadata Flash Cache
 - **5-10x** faster smart scan in storage
 - **15x** increase in total columnar capacity
Oracle TimesTen In-Memory Database

Multiple Deployment Options

TimesTen Classic

1. Standalone / Replicated Relational IMDB
 - Low latency applications
 - ISV/OEM Embedded solutions

2. Cache for Oracle Database
 - Accelerate Oracle Database applications
 - HA option via Replication

Microsecond response time, millions of TPS

TimesTen Scaleout

3. Distributed Relational IMDB
 - High throughout and storage capacity
 - Transparent data distribution
 - Elastic scalability
 - Fault tolerant

Millissecond response time, hundreds of millions of TPS
TimesTen Classic

Relational Database
- Pure in-memory
- ACID compliant
- Standard SQL, PL/SQL, APIs
- Entire database in RAM

Persistent and Recoverable
- Database and Transaction logs persisted on local disk or flash storage
- Automatic recovery after failure

Extremely Fast
- Microseconds response time
- Very high throughput

Highly Available
- Active-Standby and multi-master replication
- Very high performance parallel replication
- HA and Disaster Recovery
Performance – Response Time
Low Latency - **Microseconds** Response Time

TPTBM Read and Update
E5-2699 v4 @ 2.20GHz
2 socket, 22 cores/socket,
2 threads/core
TimesTen 11.2.2.8.0
(100M rows, 17GB data)
TimesTen Application-Tier Database Cache
For Oracle Database

- Cache subset of Oracle Database tables in TimesTen for better response time
 - With full persistence to local storage
- Read-write caching
 - Transaction execution and persistence in TimesTen
- Read-only caching
 - Transactions executed in Oracle Database
- Same architecture as TimesTen Classic
 - Supports cache tables and native TimesTen tables
- HA and fault tolerance in the application-tier
- Highly compatible with Oracle database
 - SQL, PL/SQL, APIs, ...

Telco Services
Financial Services

eCommerce, Personalization

Real-Time Analytics – Dashboard, Scorecard
Data Mart

Application

Oracle TimesTen

Application

Oracle TimesTen

Application

Oracle TimesTen

Oracle Database
Flexible Cache Group Configurations

• Cache Group describes the Oracle Database tables to cache
 – All or subset of rows and columns
 – Defined using SQL
 CREATE CACHE GROUP PremierUsers
 FROM OE.CUSTOMER (NAME VARCHAR2(100) NOT NULL,
 ADDR VARCHAR2(100)
)
 WHERE OE.CUSTOMER.ORDER > 500;

• Cache tables are regular tables in TimesTen
 – Queries/joins, insert/update/delete
TimesTen Scaleout

Shared nothing distributed IMDB built on proven TimesTen technology

- For High-Velocity **Extreme OLTP** applications
 - IOT, trading, fraud detection, mobile, click stream, billing, orders, etc.

- **Cutting-Edge Design**
 - Pure In-Memory, Full SQL, Full ACID Transactions
 - Scale-out shared nothing architecture
 - Multiple data copies for HA (K-safety)
 - All copies active for read/writes
 - Global secondary indexes
 - Complex SQL and Parallel SQL for reporting and batch

- **Centralized management and administration**
YCSB Workload B (95% Read 5% Update): **38 Million TPS**

YCSB version 0.15.0
- 1KB record (100-byte x 10 Fields)
- 100M records / Replica Set
- Uniform Distribution

TimesTen Scaleout
- 1 to 16 replica sets
- 2 synchronous replicas per replica set

Oracle Cloud Infrastructure
- 32 * BM.DenseIO2.52
TimesTen as a Cloud Adjacent Database

• TimesTen Classic/Cache is a great fit as a Cloud Adjacent Database
 – Lightweight, simple to deploy and manage
 • No DBA required
 – Standard SQL, PL/SQL, APIs
 – Persistent and recoverable, HA

• High performance
 – True in-memory architecture optimised for low latency
 – High performance high-availability

• Data synchronisation
 – If backend DB is Oracle, use built in caching features for ‘out of the box’ data sync
 – APIs such as XLA (log mining & event notification) enable ‘roll your own’ data sync
Example use case #1: Navigation, traffic alerts, parking info

• Large Japanese automotive manufacturer

• Need to
 – Capture real-time information from vehicle sensors and systems
 – Process and enhance data
 – Share with other apps & vehicles
 – Push new/updated data to vehicles

• Must haves
 – Acceptable performance
 – High resiliency
Example Use Case #1: High Level Architecture

Cloud Data Centre

Internet

Roadside Interaction System

TimesTen IMDB

AppC

AppD

AppA

AppB

DB

App

Example Use Case #1: High Level Architecture

Cloud Data Centre

Internet

Roadside Interaction System

TimesTen IMDB

AppC

AppD

AppA

AppB

DB

App
Example Use Case #1: Data Flows

- Vehicles interact with a ‘nearby’ RIS to exchange data
 - GPS derived data (position, speed, heading)
 - Any other sensor data required by application(s)

- Roadside Interaction System
 - Filters, summarises, aggregates, analyses
 - Syncs some of this data with central (Cloud hosted) database

- Central (Cloud hosted) database and apps
 - Main data repository and processing centre
 - Has the ‘bigger picture’ – performs higher level processing
 - Sends required data back to vehicles via RIS
Example use case # 2: Cache for Oracle ATP Cloud Service

• ATP Cloud Service offers incredible performance
• But it is still a cloud service
 – High network latency if used in hybrid deployments
 – May be impacted by network issues
• Deploy TimesTen Cache as an on-premises CADB to improve hybrid deployments
• Deploy a TimesTen Cache Service for fully cloud based deployments
Example use case # 2: Cache for Oracle ATP Cloud Service
Example use case # 2: Cache for Oracle ATP Cloud Service

Cloud DC 1

Oracle ATP Cloud Service

Cloud DC 2
Summary

• Migration to Cloud can present risks
 – Maintaining performance and reliability is often one of them
 – Particularly for hybrid deployments

• Cloud Adjacent Databases can help with this for some applications
 – Better performance and reliability
 – More complex architecture

• In-memory databases are often ideal as Cloud Adjacent Databases
 – Data volumes are typically low to medium
 – Lightweight footprint with little or no administration required
 – Excellent performance on low cost hardware

• Data synchronisation is a key aspect
 – Cloud Adjacent Databases usually needs to sync some data with a central database
 – Data sync needs to be flexible, fast and reliable
Cloud Adjacent Databases Facilitate Migration to Cloud

Chris Jenkins
Senior Director, In-Memory Technology, Oracle
June 2019