Low Latency, High Throughput Similarity Search with an In-Memory Associative Processor

Dr. Avidan Akerib, VP Associative Computing BU

June 2nd 2019

Agenda

02 Big Data Similarity Search

03 What Is Associative Computing

04 Architecture

05

Big Data Classification

K-nearest Neighbors For Big Data

SW Tools

Use Case Examples

About GSI corporate summary

1

FOUNDED IN 1995

PUBLIC COMPANY Consistent profitability & zero debt

3

~150 EMPLOYEES WORLDWIDE. Design / R&D in Sunnyvale, CA & Israel; Operations in Taiwan

APU

Developed the APU, Massively Parallel Processor for big data similarity search, based on Computational Memory technology.

HIGH PERFORMANCE

Leader in supplying high performance memories to demanding industries such as aerospace, defense and high performance datacenters. Acqu MikaMonu and its Associative Computing IP in 2015.

Similarity Search

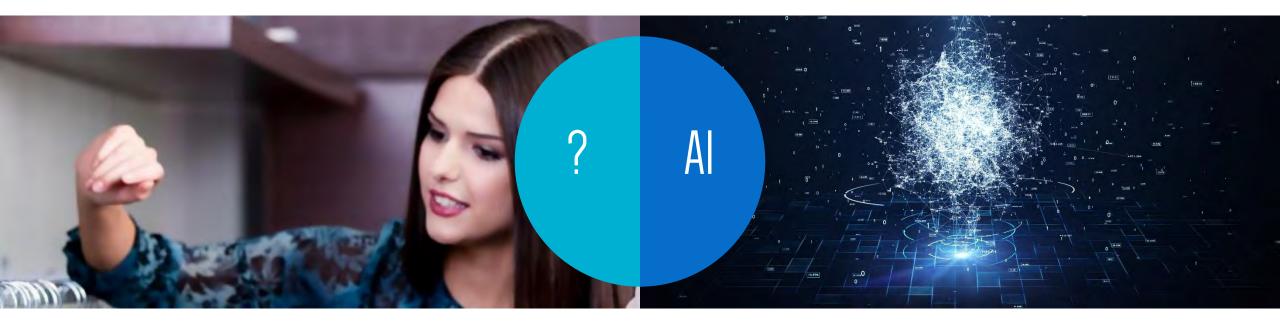
0

Once Upon a Time There Was a Fashion Store...

Can someone recommend a...

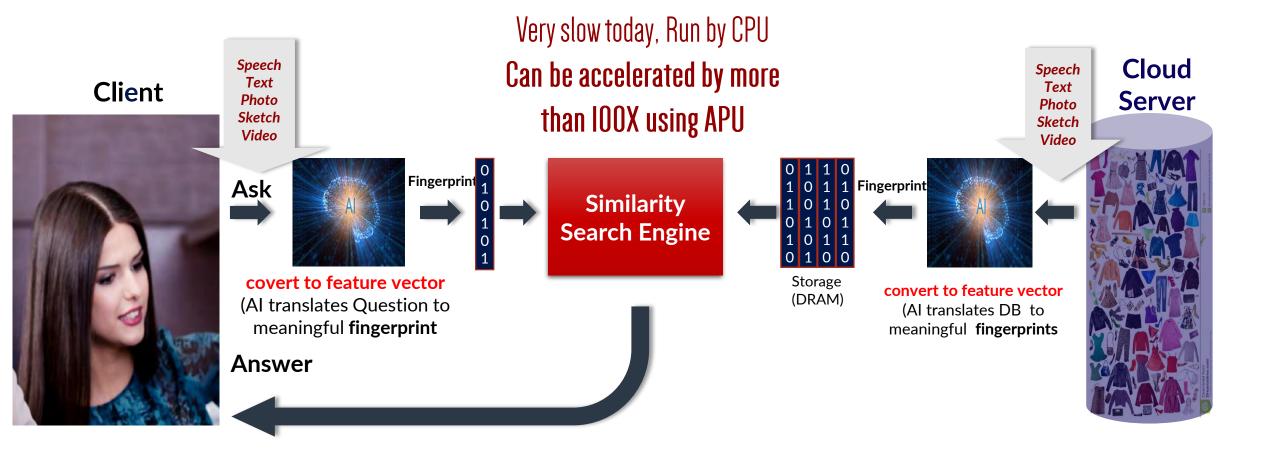
I recommend this or that or....maybe nothing...

Today's Trend



For doing that, Machine Learning is not enough. LETS UNDERSTAND THE CONCEPT FIRST

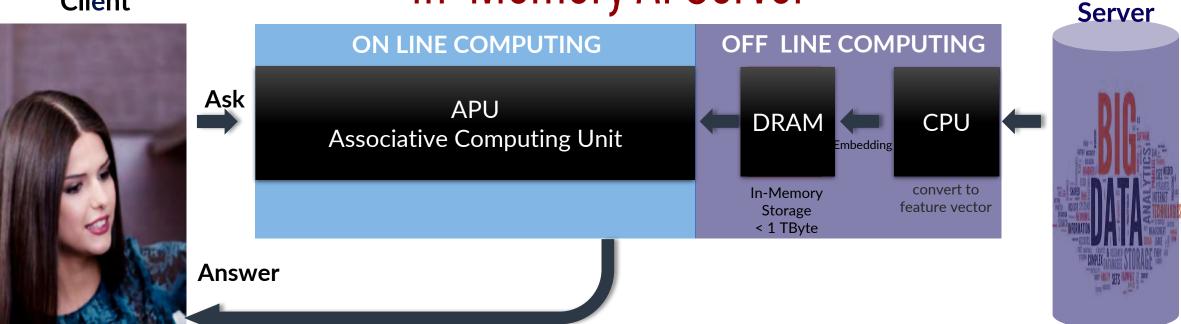
The Concept



The Concept

In-Memory Al Server

Client

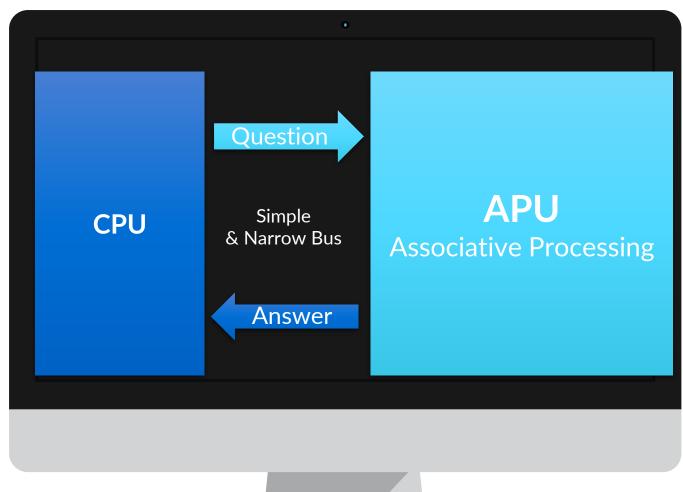


Cloud

The Associative Processing Unit (APU)

Computes in-place, directly in the memory array, removing the I/O bottleneck

- Significantly increases performance
- Reduces power consumption
- Data compression (Binary Reduction)
- Query parallelism for production system



FOR TODAY'S DEMANDING WORLD WE CAN'T RELY ON CPU AND GPGPU ALONE

Associative Computing fundamentals

STORAGE MUST BE MORE **"INTELLIGENT"**

The current state is that storage simply holds the data. The need for intelligent cache that preprocesses for the main processor (CPU or GPGPU) tedious tasks and replace the main processor with an associative processor

ESSENTIAL PART

Calculations within the memory unit with lower latency and lower voltage is making it an essential part of any architecture of any datacenter

Similarity Search | Visual Search

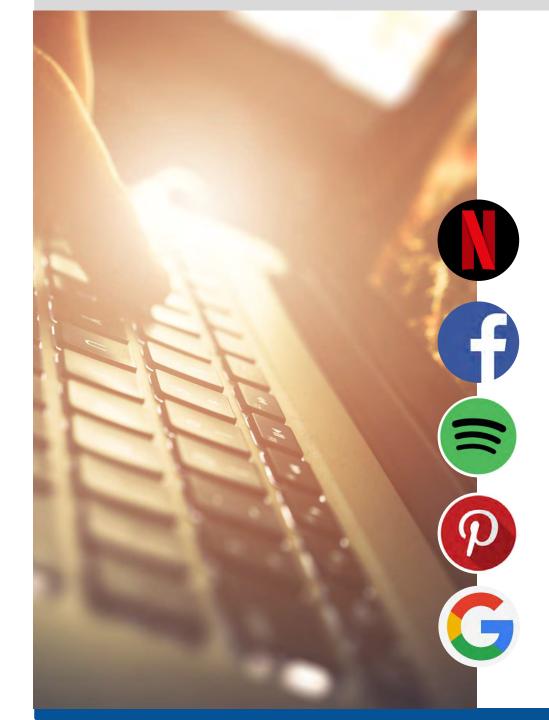
CRITICAL COMPONENT ACROSS APPS

Similarity search is a critical component for many applications

- As it becomes common large scale similarity search
- Similarity is in Visual Search, Voice, Text apps
- Across applications in all industries consumer, bioinformatics, cyber, automotive

The future of online product research: visuals and voice. The rise of voice searches fueled by technology like Google Home and Amazon's Alexa has been well-documented.

But visual searches are also on the rise. Products like Pinterest Lens use machine learning to aid in brand and product discovery"



Our User Experience

WERE EXPERIENCING SIMILARITY AND VISUAL SEARCH

Netflix

Uses similarity search to figure out our taste in TV to retain us by offering personal content

Facebook

Tries to tailor our newsfeed to our interests

Spotify Builds our playlists according to what we listen to

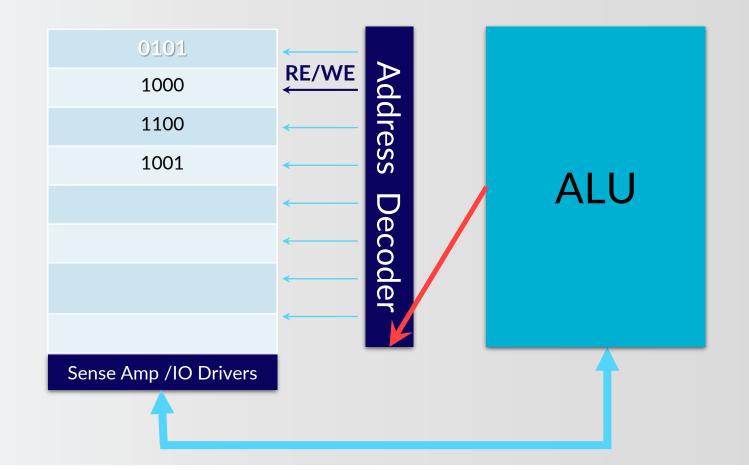
Pinterest

Lets us upload a picture and offer us similar products

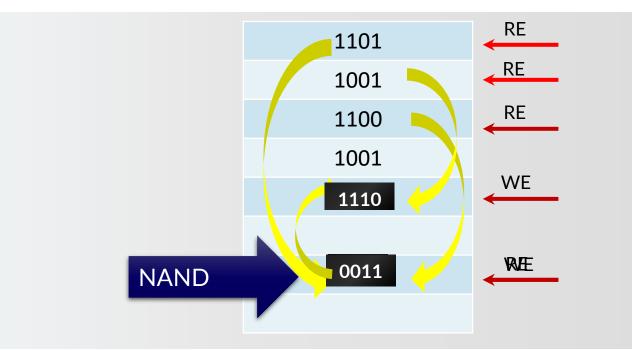
Google

Tries to constantly improve its visual search to be more relevant in search results

How Computers Work Today

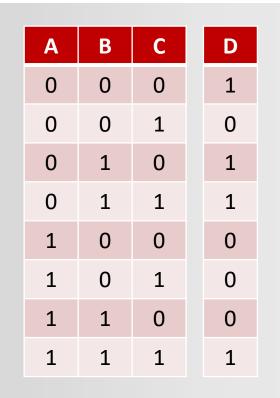


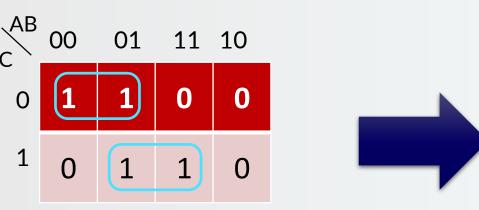
Lets Look Different Accessing Multiple Rows Simultaneously



Bus Contention is not an error !!! It's a simple NOR/NAND satisfying De-Morgan's law

Truth Table Example





!A!C + BC = !!(!A!C + BC) = ! (!(!A!C)!(BC))

= NAND(NAND(!A,!C),NAND(B,C))

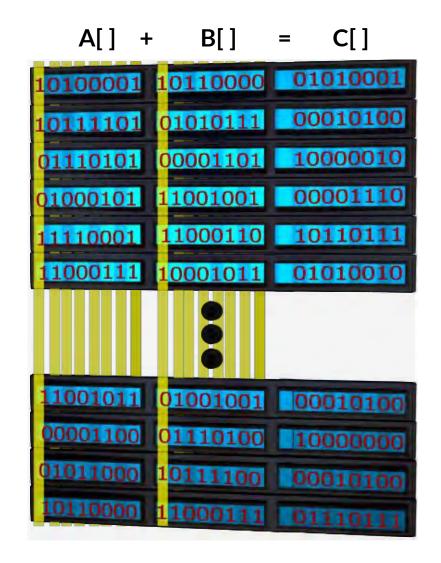
- Every minterm takes one clock
- All bit lines execute Karnaugh tables inparallel

Vector Add Example

vector A(8,32M) vector B(8,32M) Vector C(9,32M) C = A + B

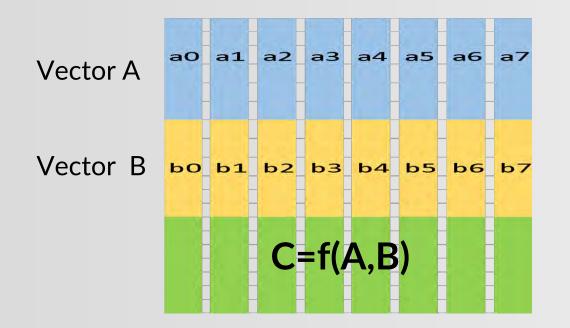
No. Of Clocks = 4 * 8 = 32 Clocks/byte= 32/32M=1/1M OPS = 1Ghz X 1M

= 1 PetaOPS



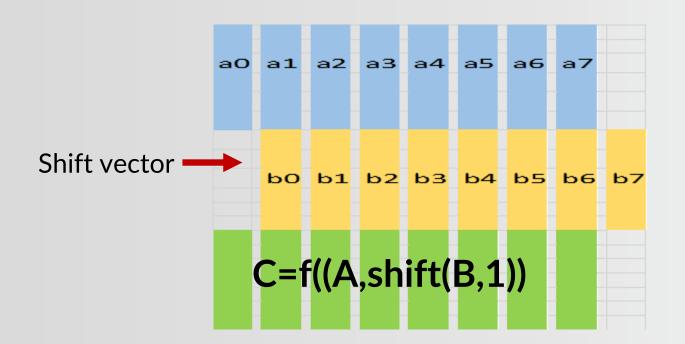
Single APU chip has 2M Bit Line Processors – 64 TOPS or >> 2 TOPS/Watt

Computing in the Bit Lines



Each bit line becomes a processor and storage Millions of bit lines = millions of processors

Computing in the Bit Lines

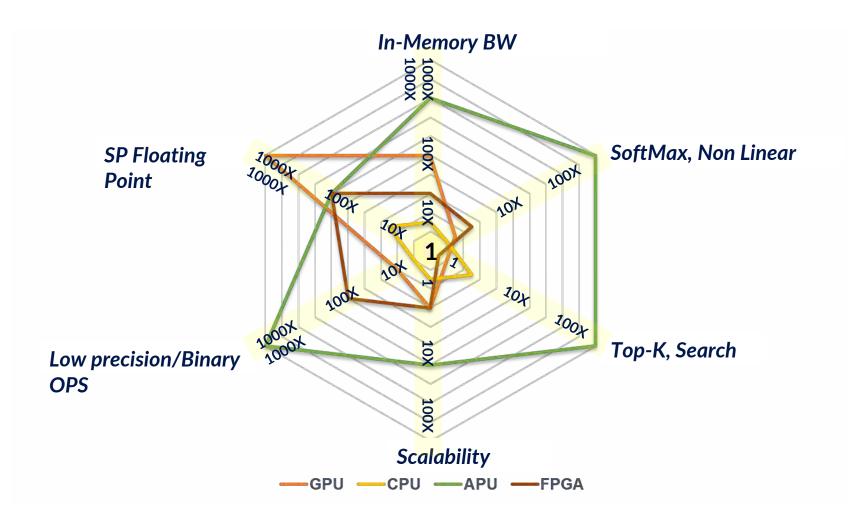


Parallel shift of bit lines @ 1 cycle sections Enables neighborhood operations such as convolutions

Cosine Similarity Example

> 100,000 Quires/sec , any K size, 128K Records, Sigle chip@10Watts

CPU vs GPU vs FPGA vs APU



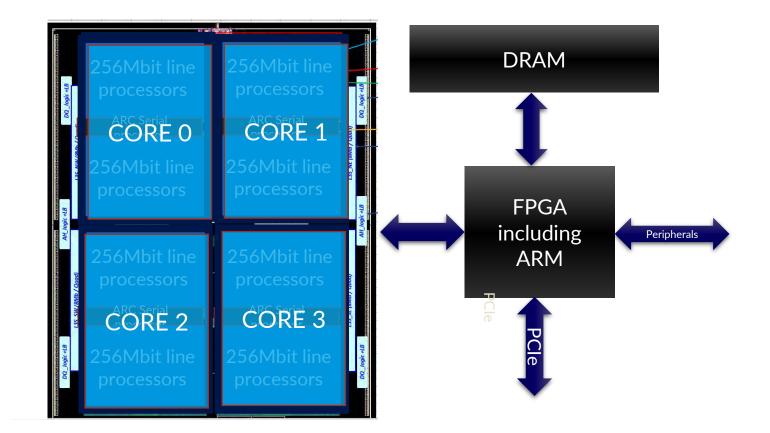
CPU/GPGPU vs APU

CPU/GPGPU (Current Solution)	(In-Place Computing (APU			
Send an address to memory	Search by content			
Fetch the data from memory and send it to the processor	Mark in place			
Compute serially per core (thousands of cores at most)	Compute in place on millions of processors (the memory itself becomes millions of processors			
Write the data back to memory, further wasting IO resources	No need to write data back—the result is already in the memory			
Send data to each location that needs it	If needed, distribute or broadcast at once			

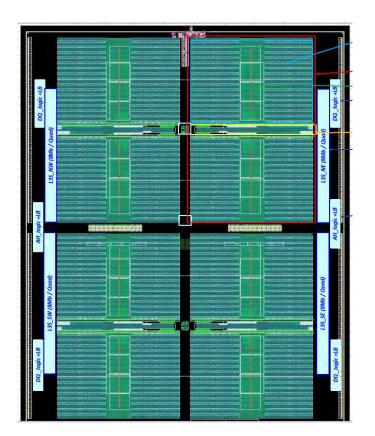
Architecture

APU Chip Layout

2M bit processors or 128K vector processors runs at 1G Hz From 2 Tera Flops to 2 Peta Ops



APU Layout vs GPU Layout



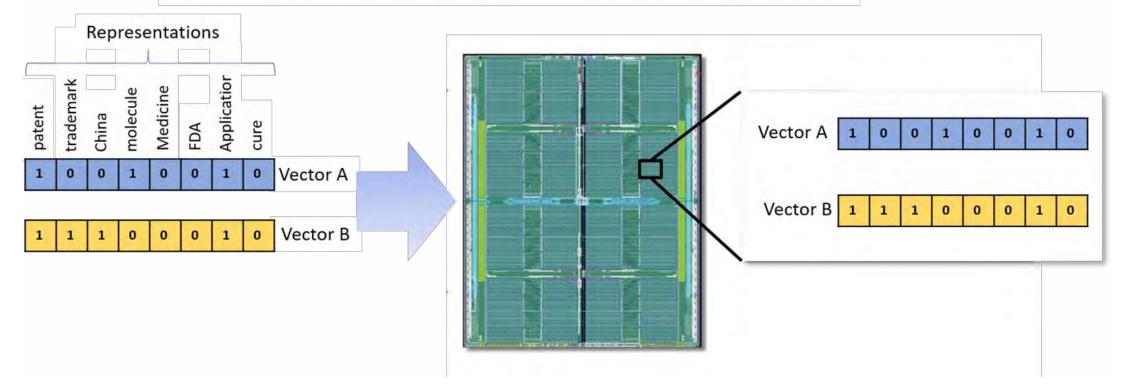
Multi-Functional, Programmable Blocks

	L0 Instruction Cache Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)								
Register File (16,384 x 32-bit)									
FP	64	INT	INT	FP32	FP32				
FP	64	INT	INT	FP32	FP32				
FP	64	INT	INT	FP32	FP32		TENSOR	TENSOR	
FP	64	INT	INT	FP32	FP32	TEN			
FP	64	INT	INT	FP32	FP32	CORE CC		CORE	
FP	64	INT	INT	FP32	FP32				
FP	64	INT	INT	FP32	FP32				
FP	64	INT	INT	FP32	FP32				
LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU	

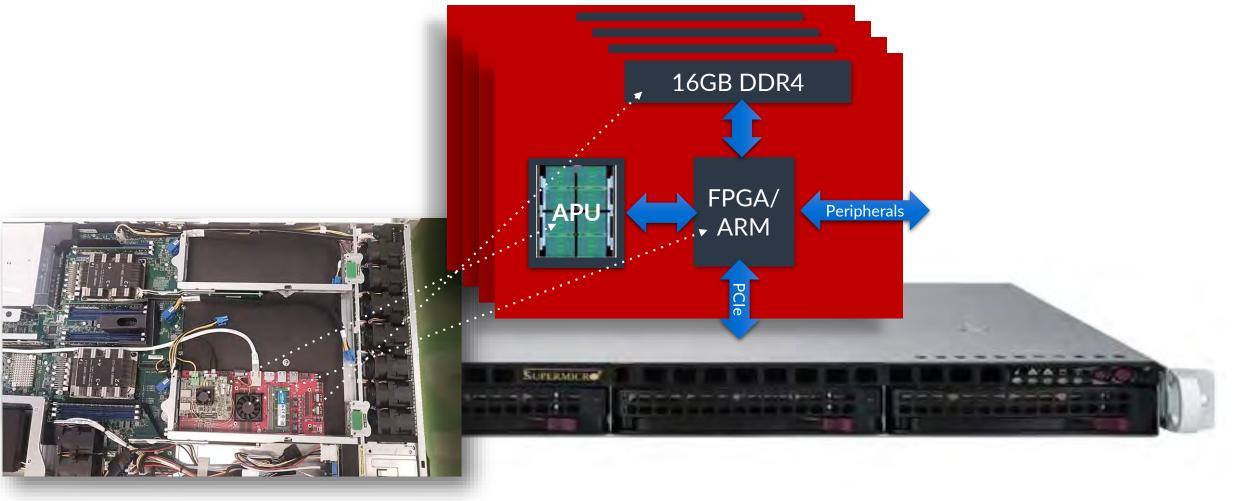
Acceleration of FP operation Blocks

In-Memory Compute Example

Sentence representation as vector & similarity search with APU



APU board/System Architecture



K-Nearest Neighbors for Big Data

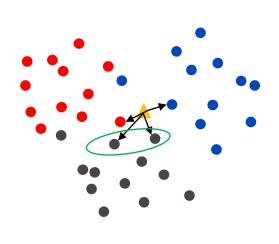
K-Nearest Neighbors (k-NN)

Simple example:

N = 36, 3 Groups

2 dimensions (D = 2) for X and Y

K = 4



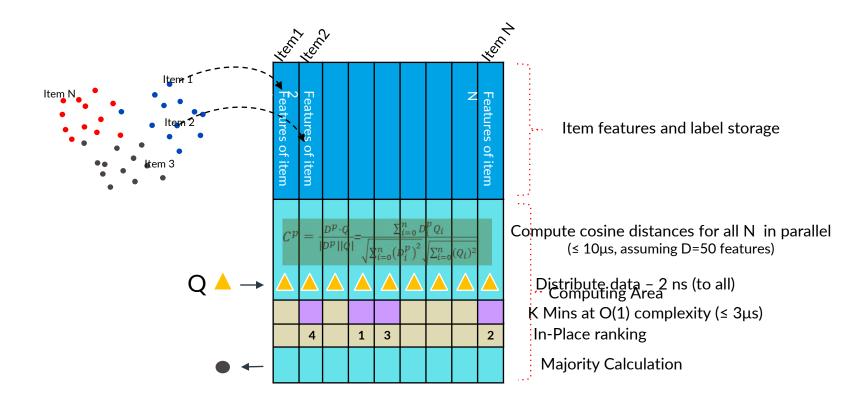
Group **Green** selected as the majority. **For actual applications:**

N = Billions

D = Tens

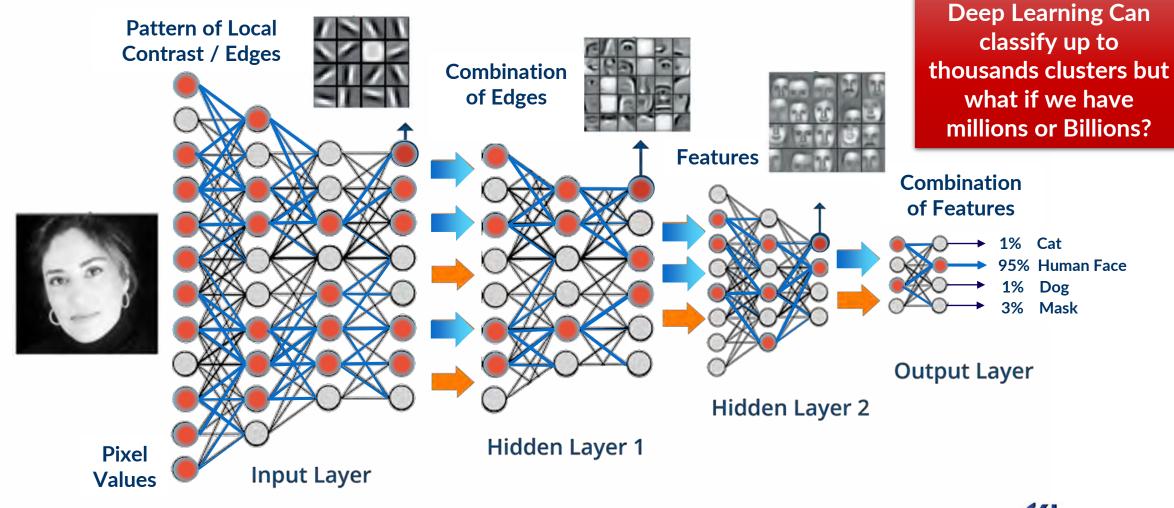
K = Tens of thousands

k-NN Use Case in an APU

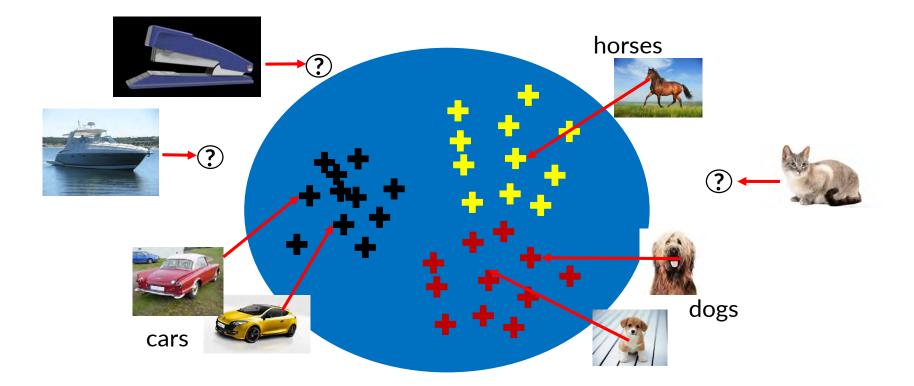


With the data base in an APU, computation for all N items done in ≤ 0.05 ms, independent of K (1000X Improvement over current solutions)

The Problem In Deep Learning



What About New Updates



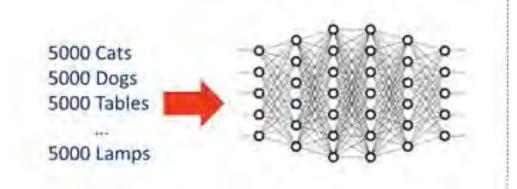
Updates unlabeled images requires new training – that consume latency, power, performance

DEEP LEARNING IN NOT ENOUGH

Associative Computing for Zero/Low Learning

Gradient-Based Optimization has achieved impressive results on supervised tasks such as image classification

These models need a lot of data

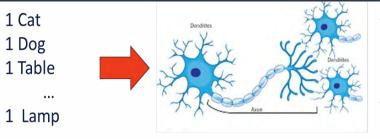


ASSOCIATIVE COMPUTING

Like people, can measure similarity to features stored in memory Can also create a new label for similar features in the future

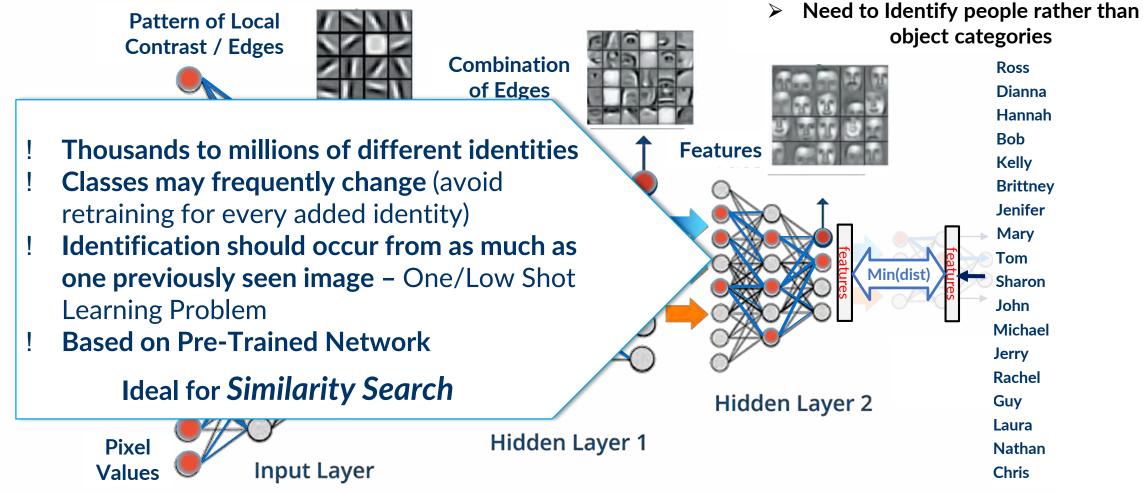
Visual search, Face recognition and NLP are some of used cases showing on next slides

People can learn efficiently from few examples

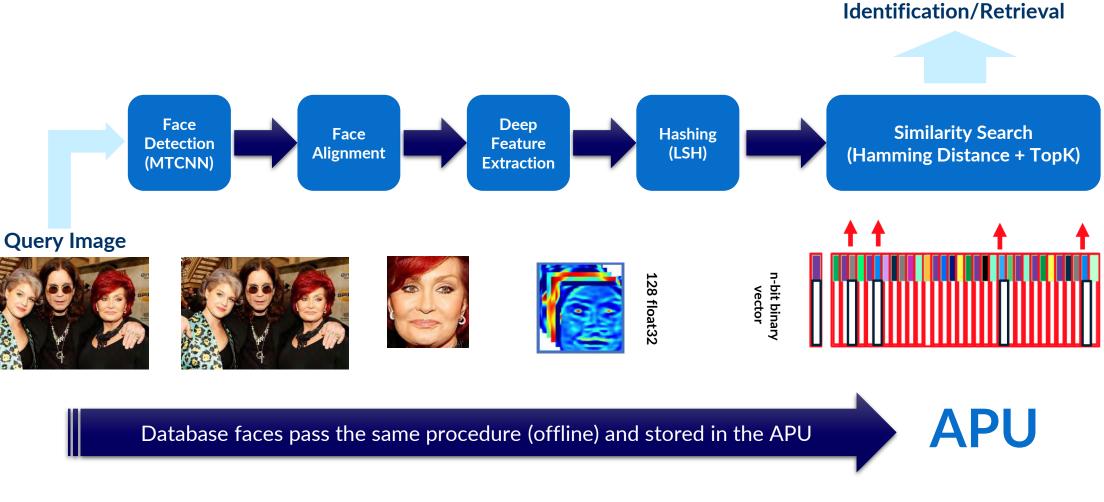


Millions to Billions Categories

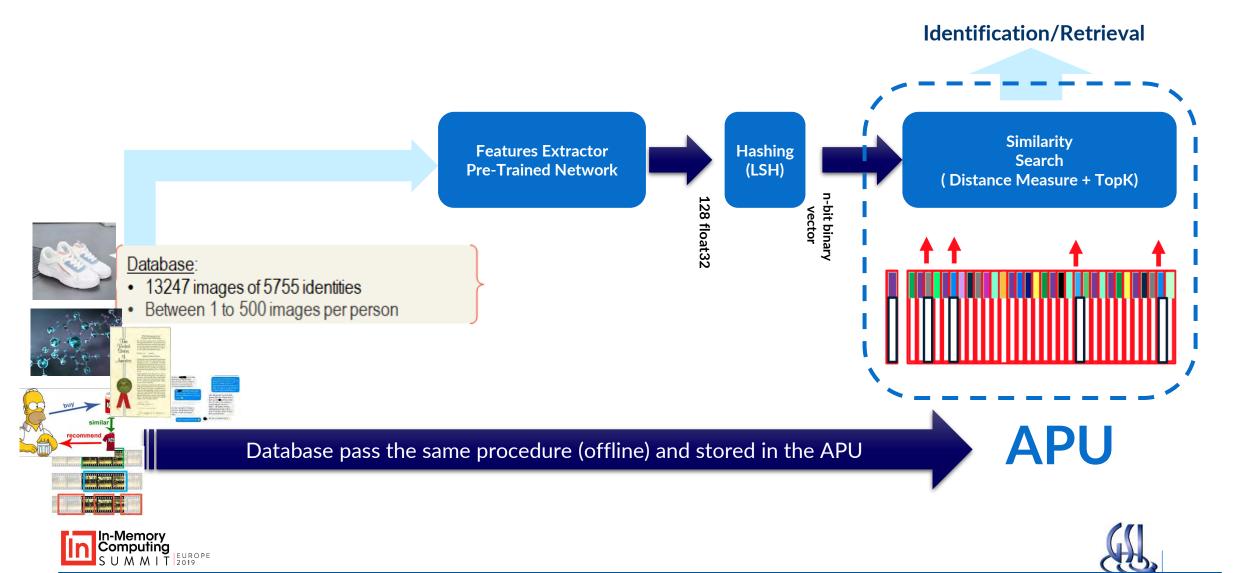
Neural Network as Feature Extractor



Face Recognition Pipe Line



Same Concept for Any Big Data Item



Face Recognition Example

Database:

- 13247 images of 5755 identities
- Between 1 to 500 images per person

Face Feature Extraction

MTCNN found 4 faces:

====== Facenet Embeddings: (4, 128) float32 total time: 0:00:01.954904 / 4 images - 4 faces detection time: 0:00:00.622483 / 4 images face embedding time: 0:00:00.070863 / 4 faces

Similarity Search

Query

Donald Trump

Prince Willem-Al

John Manley

John Snow

Condoleezza Rice Condoleezza Rice Condoleezza Rice Condoleezza Rice Condoleezza Rice

Prince Willem-Al

Michael Jackson

Michael Jackson

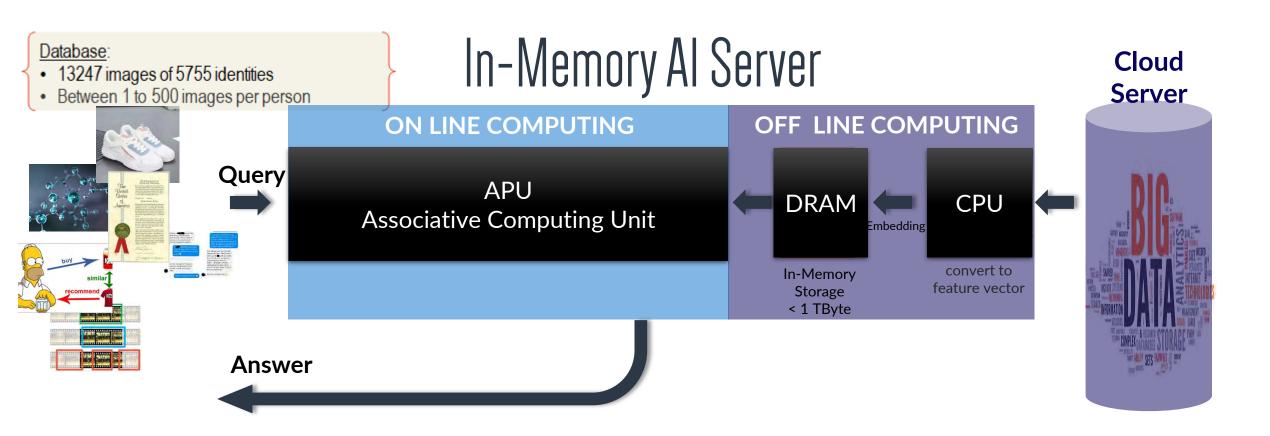
Querv

Ricardo Mayorga

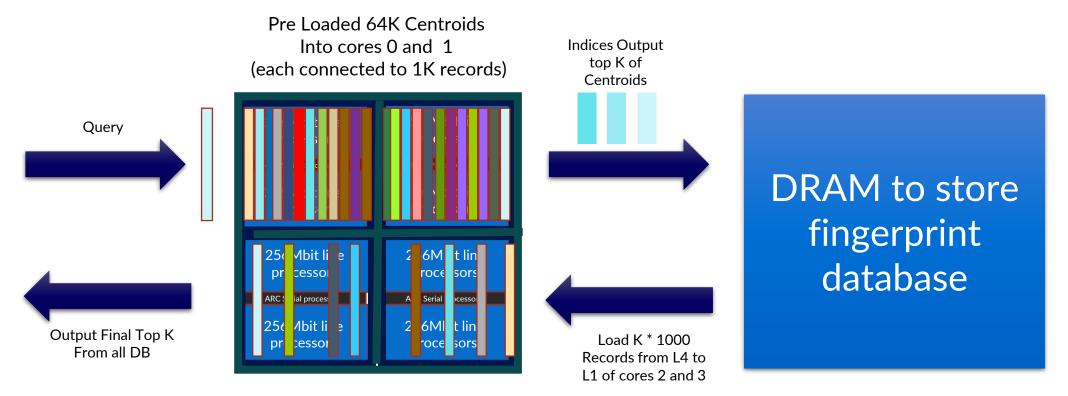
Tiger Woods Fernando Vargas **Tiger Woods**

Michael Jackson

In Memory Big Data Similarity Search



Searching Concept on APU Example: Searching 64M records in a single APU chip



Example: 64 M records = 64 K Centroids X 1000 records each Up to 100,000 queries/sec

Single Server 256N Records

HW:

1 Sever with 4 APU Boards (One APU 1.1 ASIC Per Board)

Data Base:

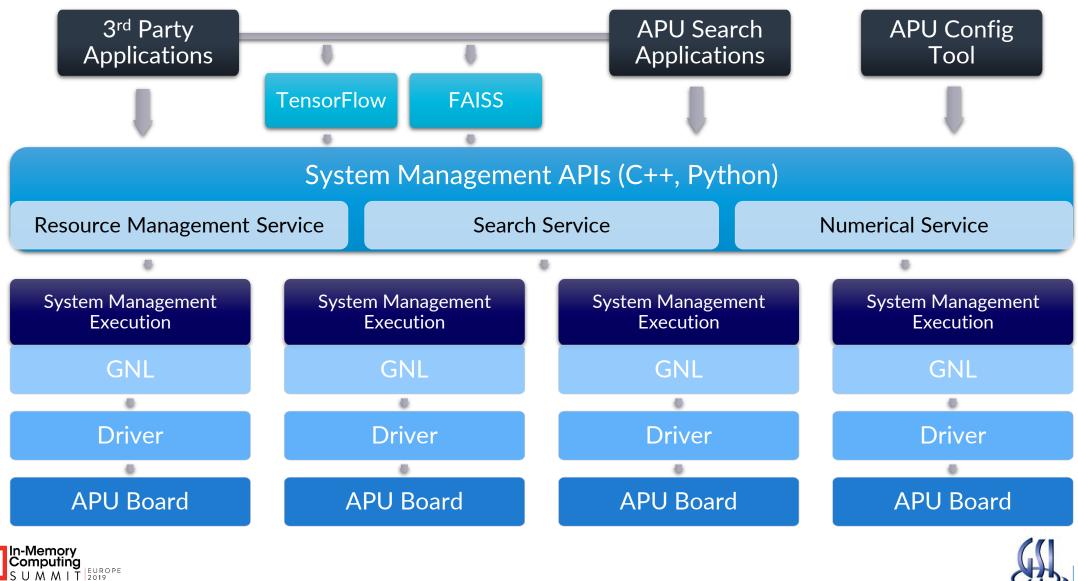
- 256 Million Images
- 256M Binary Vectors with nBit=512 ---? Total: 16GB

Pre Search Preparation:

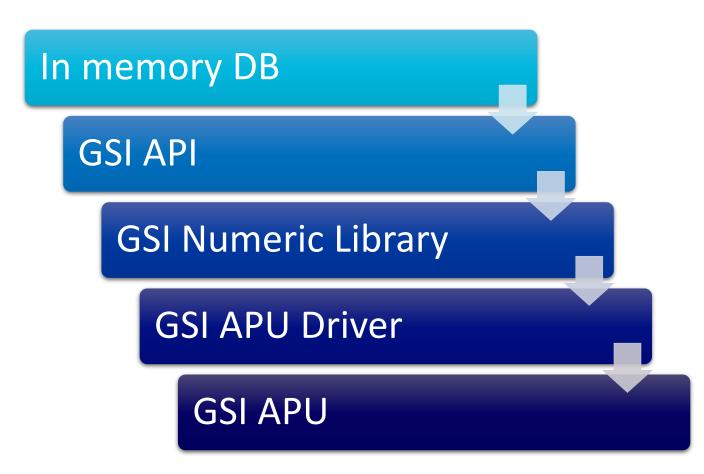
- DB Clustering
 - 256K Clusters x 1000 Records in each Cluster
 - Cluster Size: 16MB
 - Total Records size: 16GB
- 2 APU's will be use for TOP-K clusters and 2 APU's will be use for TOP-K Records

SW Tools

Software Stack Layout



APU- Supported Functionalities



- Comprehensive list of numerical function algorithms supported
- Wide range of algorithms
- Multiple clustering techniques
- Interfacing supported
- Range of interfaces

Case Example

Weizmann Institute of Science

Molecule Similarity Structure Search

DB Size for the Pilot:38M Compounds

Vector Size:

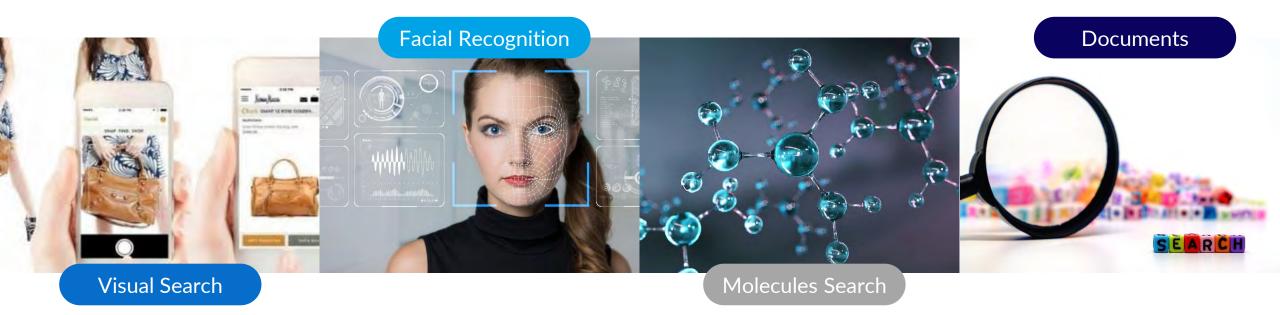
- 512 Bits, Search time 12 sec.
 Instead of 6 Minutes
- 1024 Bits, Search Time 24 Sec.
 Instead of endless time
- The performance based on GSI prototype chip.
 - For commercial search time is 0.4 sec for 512 bits per 100 queries , or 0.8 sec for 1K bits per 100 queries.

Solution is scalable for any size of DB any size of fingerint and any type of search algorithm.

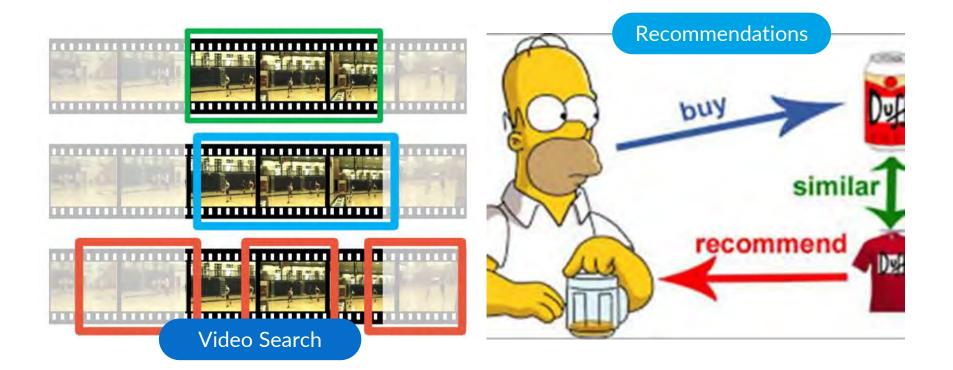
Search:

- Algorithm: Tanimoto
- Support Threshold Search
- K- Nearest Neighbors (KNN)
 K=1,10,100,1000

GSI Current Applications



In Research



Thank You QUESTIONS?