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ZS is a professional services firm that works side by side with 
companies to develop and deliver products that drive 
customer value and company results

BANGALORE  +  BARCELONA  +  BOSTON  +  BUENOS AIRES  +  CHICAGO  +  EVANSTON  +  FRANKFURT  +  LONDON
LOS ANGELES  +  MILAN  +  NEW DELHI  +  NEW YORK  +  PARIS  +  PHILADELPHIA  +  PRINCETON  +  PUNE
SAN DIEGO  +  SAN FRANCISCO  +  SÃO PAULO  +  SHANGHAI  +  SINGAPORE  +  TOKYO  +  TORONTO  +  ZÜRICH

6,000+
ZSers who are passionately committed to helping 
companies and their customers thrive

24 OFFICES 
WORLDWIDE
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Typical enterprise data engineering & analytics 
problems and solutions we deal with

Variety of data, 
no easy access

Scalable 
reporting, 
packaged 
analytics

Specialized 
Analytical Apps

Self-serve 
advanced 
analytics

Enterprise Data 
Lakes

Cloud DW/BI 
Solutions

Web UI + NOSQL 
DBs

Data-science 
workbenches
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Example use case highlights

Use Case Highlights

• <24 hours SLA for Data to Reports

• 50+ data sources (S3, FTP, Internal DB, 

SFDC)

• 100+ analytics ready data packs

• 500+ business rules / KPIs

• 2000+ users (field + HQ)

• 3500+ GB data added weekly (500 GB 

inputs)

Business Challenges

• Frequently changing business rules

• Evolving internal and external input data

• Competing priorities within user group

• Complex data quality challenges

• Business and data focused internal staff
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Solution Architecture

Version control

Code Scans

Continuous Integration

DevOps Pipeline

EMR / Databricks Spark Clusters

Airflow API Gateway
AWS Lambda

Redshift

Athena

S3

Notebooks

truffleHog

Vulnerability Scans

Orchestration
Services

Storage

Compute

Serverless Query

Low Latency Query

Reports / Analytics

Data Science
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Summary of challenges

Shortfall of 
techno-functional 

experts

Many Enterprise 
ETL gatekeepers 
have not evolved

Optimal 
infrastructure 

costs take some 
doing

Diversity of ETL 
jobs creates need 

for tuning

Technical 
sophistication 

compromised when 
faced with tight 

timelines

Scripting, CI/CD, 
secure SDLC, 

memory optimized 
data models, etc. 
need education

Elastic infra costs 
initially can be 

surprising, 
especially during 

Development

Different tuning 
approaches fit 

different job types 
needing continuous 

improvement
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SQL or Scripting?

Split application into core technical components and business logic 

SQL is excellent for business logic, second nature for domain experts 

Spark SQL highly optimized, will run faster in many cases 

Encapsulate SQLs in PySpark shells to retain maximum flexibility 

PySpark excellent for technical components, easy to read and maintain 

Beauty of Spark is that both will use same execution engine and design 
patterns
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Spark Modularized View (SMV) Data 
Application Framework

https://github.com/TresAmigosSD/SMV

smv-run –run-app runs entire application
smv-run –s stagename runs one stage only
smv-run –m stagename.module runs one module only

df.smvUnpivot(“Col1", “Col2", “Col3")
df.smvGroupBy(“ID").smvFillNullWithPrevValue($“claimid".asc)
(“Indication")

App
Stag

e
Module

Smv 
DataSe

t

Module

Smv 
DataSe

t

Stag
e

Module

Smv 
DataSe

t

Module

Smv 
DataSe

t

CREATE TABLE cohort AS
    SELECT DISTINCT p_id from (
        SELECT DISTINCT p_id FROM 
Rx
        UNION ALL
        SELECT DISTINCT p_id FROM 
Px)

Without SMV:

class PatientCohort (SmvModule):
    def requiresDS(self):
        return [Rx,Px]

    def run(self, i):
        # Select distinct patient ids for RX claims
        d_rx = i[Rx].select(‘p_id').dropDuplicates()

        # Select distinct patient ids for PX claims
        d_px = i[Px].select(‘p_id').dropDuplicates()

        # Combine RX & PX and drop duplicates
        cohort = 
d_rx.smvUnion(d_px).dropDuplicates()

        return cohort

With SMV:Enforced modularization Key Benefits

Enforced modularization

Nifty ETL functions

Easily debug any step

Code wrapped with data

https://github.com/TresAmigosSD/SMV
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Extreme performance tips

Segregating storage and compute is a must for maximum elasticity 

Shuffles write to disk, optimize data models to minimize joins and aggs 

Broadcast join is your best! First thing to try for joins 

Cost based optimizer is awesome! Don’t forget to analyze tables 

Keep UDFs in Scala/Java, PySpark UDFs are relatively slower
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Extreme performance tips: decouple 
storage and compute

Process 1 DQM 1 Process 2 DQM 2 Process 3 DQM 3 Process 4 DQM 4

Process 1

DQM 1

Process 2

DQM 2

Process 3

DQM 3

Process 4

DQM 4
*DQM –  Data Quality Module

Possible only with decoupled 
storage and compute

Process and DQM in single cluster

Process and DQM in separate cluster
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Extreme performance tips

Think of task level parallelism when packaging Spark jobs
Check 1 Check 2 Check 3 … Check n
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Asking your Spark experts to codify tuning steps 
will also help functional experts learn to self-service

Spark Job 
tuning

Has the job 
succeeded end to 
end at least once?

Spilt the job into 
multiple steps and 
execute each one 
individually, writing 
intermediate data 
to disk to isolate 

the Problem

How many stages 
does the job have?

Are the later stages 
running longer 

leading to higher 
run times?

Breaking the job into intermediate 
steps not more than 4 stages each. 
Shuffling in Prior stages has most 

likely led to sub-optimal data 
distribution

Does the job 
involve a join?

Does the join 
involve one large 
and one or more 
relatively smaller 
tables (~100 MM 

rows of 5 columns 
is small for ZS 

workloads)

Does the SQL plan 
in Spark UI or the 
execution plan on 

shell show ALL 
small tables being 

Broadcast?

Add explicit 
broadcast hints for 
all small tables, be 
sure to use aliases 
in the hint if aliases 
are defined in the 

SQL

Check if 
summary task 
Metrics for join 

stage shows disk 
spill over or 

straggler tasks

Is the 1:n join 
between fact and 

dimension that will 
cause fact data 

rows to multiply?

Increase 
spark.sql.shuffle.parttions 
by 3-5X and check if the 
problem is eliminated. 

Note that this can result in 
smaller files in the output 

and a step to coalesce data 
into fewer partitions at the 
end will benefit any direct 

consumers

Repartition fact data right  
after it is read to increase 

the number of data 
partitions available for the 

join step. Increasing 
spark.sql.shuffle.parttions 
can also help the join step 

run faster with more 
partitions

Does the job 
involve aggregation

A sort-merger join 
will be used in such 
cases. Check if the 

stages running 
longest Is tied to 

merge step or one 
of sort steps

Partitioning or bucketing 
source data can 

significantly boost 
performance, best done if 

more than one job will 
benefit from this job will 

benefit from this sorting and 
bucketing

Check Summary 
task Metrics for 

disk spill Over or 
straggler tasks

Add more cores to the process, 
either by providing more executors 

or more cores per executors 
(Provided no spill over happens)

If few straggler tasks exist, check 
for skewed keys or uneven input file 

splits

Add additional keys and create an intermediate 
aggregate followed by a final aggregate

Repartition input data to create more even file splits

Increase executor memory or reduce cores per 
executor

Does the job 
involve Window 

functions?
Each Window function will behave like a separate job so 

essentially you are looking at many jobs clubbed together. 
Best way to tine this type of job is combine steps needing the 

same window partitions into one step and break out others 
into different steps

Does the job slow down at the final write stage when data is 
being written to s3?

Check if you are using the latest S3commiter 
configuration from the CC team, have speculation 

turned off, and if need be switch to Gzip 
compression for faster writes

To be continued

Increase the number of 
cores available to the job 

by either increasing number 
of executors or increasing 
the cores per executor. If 

the peak memory used by 
tasks is low, changing 

#cores per executor will be 
most helpful 

Check for skewed keys that 
will lead to disproportionate 

multiplication of data 
causing some tasks to spill 

over while others to run 
well. Filter such keys out 

into a separate dataset and 
optimize both joins 

separately (broadcast with 
very fine partitions for 

dataset with skewed keys)

Check if summary 
task Metrics shows 

a near even run 
time for tasks 
across all the 

quartiles

NO

YES

YES

NO

NO

YESYES

Skewed Keys

Uneven File 
Splits

All tasks show  
spill-over

YES

NO

>4

<=4

NO

YES

YES

YES

YES

NO M
er

ge
 

St
ag

e

YES

NO

NO

YES

YES

Problem 
Persists

Sort Stage
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Read cust 
level sales 

data (335MM)

Prep 
dimensions 

for joins

Join with 
Time bucket 
dimension 

(1.3B rows)

Aggregate
(332MM 

rows)

Join with 
Product 

dimension
(1.7 B rows)

Aggregate & 
write to S3

(1.15 B rows)

Read back 
Market data 

(412MM)

Replicate 
each market 
row for all 
products in 
the market 
and write to 

S3
(6.2B rows)

Fairly fast Reasonably 
fast

Reasonably 
fast

▪ No broadcast
▪ Some disk spill-over

Reasonably 
fast

Reasonably 
fast

▪ No broadcast
▪ Very large disk spill-

over

Optimization:
Source data 

partitions + More 
cores (scales up 

to connection 
limit)

Optimization:
Broadcast join

+
More partitions

+
More cores

Optimization:
More partitions

+
More cores

Optimization:
Broadcast join

+
More partitions

+
More memory 
per task / core 
(bigger nodes)

Optimization:
More partitions

+
More cores

Optimization:
More cores

Optimization:
Broadcast join +
Large number of 
partitions +
More memory per 
node

Here is an example of tuning work done by a Spark 
expert

Original performance: ~1 hour on 40 nodes (160 cores, 1280 GB memory); ~1 hour on 80 nodes (320 cores, 2560 GB memory)
Revised performance: ~40 min on 20 nodes (160 cores, 1280 GB memory); ~20 min (320 cores, 2560 GB memory)
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Calling many APIs in parallel, Spark can 
help!

Call REST 
API

Spark Map()

RDD

Make API Call

Handle Errors & Retries

Parse Return Response

Col 1 Col 2
A1 B1
A2 B2
A3 B3
A4 B4

R1 R2 R3 R4 R N

UDF

Col 1 Col 2 Response Error Code
A1 B1 R1 Null
A2 B2 R2 Null
A3 B3 R3 Null
A4 B4 Null 500

Input
Output

# UDF Definition

def api_caller(x):

    r = 
post(url=url,data=json.dumps(data),headers=final_headers)
    response = r.json()['Id']    
    return Row(Response= str(x[0]))

# Map function to run for each df row

input_df = spark.sql("""select * from <table>"""

mapped_batch_df = df.rdd.map(api_caller).toDF()
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DevOps for Data Platforms

DevOps for data platforms is hard! 

Rule metadata and input data change more often than code 

Recommendations: 

Hold data and rule metadata constant to test codes first 

Create pipelines to test integrated code, rule metadata, and data together 

Think of threshold based test cases rather than absolute for integration tests
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Architecting for Adaptability

Mature cloud users are pivoting towards microservices architecture patterns 
based on AWS Lambda, AWS ECS, Docker-Kubernetes, etc. 

Design modules by first defining API signatures even if not building 
microservices for future compatibility 

Micro-APIs in AWS Lambda can easily be designed for reusability, think 
cluster management, job auditing, notification, partition refresh, etc.


