
Harnessing the power of Spark for Enterprise
data engineering and analytics

Vickye Jain, Associate Principal
ZS Associates
June 4, 2019

!2

ZS is a professional services firm that works side by side with
companies to develop and deliver products that drive
customer value and company results

BANGALORE + BARCELONA + BOSTON + BUENOS AIRES + CHICAGO + EVANSTON + FRANKFURT + LONDON
LOS ANGELES + MILAN + NEW DELHI + NEW YORK + PARIS + PHILADELPHIA + PRINCETON + PUNE
SAN DIEGO + SAN FRANCISCO + SÃO PAULO + SHANGHAI + SINGAPORE + TOKYO + TORONTO + ZÜRICH

6,000+
ZSers who are passionately committed to helping
companies and their customers thrive

24 OFFICES 
WORLDWIDE

!3

Typical enterprise data engineering & analytics
problems and solutions we deal with

Variety of data,
no easy access

Scalable
reporting,
packaged
analytics

Specialized
Analytical Apps

Self-serve
advanced
analytics

Enterprise Data
Lakes

Cloud DW/BI
Solutions

Web UI + NOSQL
DBs

Data-science
workbenches

!4

Example use case highlights

Use Case Highlights

• <24 hours SLA for Data to Reports

• 50+ data sources (S3, FTP, Internal DB,

SFDC)

• 100+ analytics ready data packs

• 500+ business rules / KPIs

• 2000+ users (field + HQ)

• 3500+ GB data added weekly (500 GB

inputs)

Business Challenges

• Frequently changing business rules

• Evolving internal and external input data

• Competing priorities within user group

• Complex data quality challenges

• Business and data focused internal staff

!5

Solution Architecture

Version control

Code Scans

Continuous Integration

DevOps Pipeline

EMR / Databricks Spark Clusters

Airflow API Gateway
AWS Lambda

Redshift

Athena

S3

Notebooks

truffleHog

Vulnerability Scans

Orchestration
Services

Storage

Compute

Serverless Query

Low Latency Query

Reports / Analytics

Data Science

!6

Summary of challenges

Shortfall of
techno-functional

experts

Many Enterprise
ETL gatekeepers
have not evolved

Optimal
infrastructure

costs take some
doing

Diversity of ETL
jobs creates need

for tuning

Technical
sophistication

compromised when
faced with tight

timelines

Scripting, CI/CD,
secure SDLC,

memory optimized
data models, etc.
need education

Elastic infra costs
initially can be

surprising,
especially during

Development

Different tuning
approaches fit

different job types
needing continuous

improvement

!7

SQL or Scripting?

Split application into core technical components and business logic

SQL is excellent for business logic, second nature for domain experts

Spark SQL highly optimized, will run faster in many cases

Encapsulate SQLs in PySpark shells to retain maximum flexibility

PySpark excellent for technical components, easy to read and maintain

Beauty of Spark is that both will use same execution engine and design
patterns

!8

Spark Modularized View (SMV) Data
Application Framework

https://github.com/TresAmigosSD/SMV

smv-run –run-app runs entire application
smv-run –s stagename runs one stage only
smv-run –m stagename.module runs one module only

df.smvUnpivot(“Col1", “Col2", “Col3")
df.smvGroupBy(“ID").smvFillNullWithPrevValue($“claimid".asc)
(“Indication")

App
Stag

e
Module

Smv
DataSe

t

Module

Smv
DataSe

t

Stag
e

Module

Smv
DataSe

t

Module

Smv
DataSe

t

CREATE TABLE cohort AS
 SELECT DISTINCT p_id from (
 SELECT DISTINCT p_id FROM
Rx
 UNION ALL
 SELECT DISTINCT p_id FROM
Px)

Without SMV:

class PatientCohort (SmvModule):
 def requiresDS(self):
 return [Rx,Px]

 def run(self, i):
 # Select distinct patient ids for RX claims
 d_rx = i[Rx].select(‘p_id').dropDuplicates()

 # Select distinct patient ids for PX claims
 d_px = i[Px].select(‘p_id').dropDuplicates()

 # Combine RX & PX and drop duplicates
 cohort =
d_rx.smvUnion(d_px).dropDuplicates()

 return cohort

With SMV:Enforced modularization Key Benefits

Enforced modularization

Nifty ETL functions

Easily debug any step

Code wrapped with data

https://github.com/TresAmigosSD/SMV

!9

Extreme performance tips

Segregating storage and compute is a must for maximum elasticity

Shuffles write to disk, optimize data models to minimize joins and aggs

Broadcast join is your best! First thing to try for joins

Cost based optimizer is awesome! Don’t forget to analyze tables

Keep UDFs in Scala/Java, PySpark UDFs are relatively slower

!10

Extreme performance tips: decouple
storage and compute

Process 1 DQM 1 Process 2 DQM 2 Process 3 DQM 3 Process 4 DQM 4

Process 1

DQM 1

Process 2

DQM 2

Process 3

DQM 3

Process 4

DQM 4
*DQM – Data Quality Module

Possible only with decoupled
storage and compute

Process and DQM in single cluster

Process and DQM in separate cluster

!11

Extreme performance tips

Think of task level parallelism when packaging Spark jobs
Check 1 Check 2 Check 3 … Check n

!12

Asking your Spark experts to codify tuning steps
will also help functional experts learn to self-service

Spark Job
tuning

Has the job
succeeded end to
end at least once?

Spilt the job into
multiple steps and
execute each one
individually, writing
intermediate data
to disk to isolate

the Problem

How many stages
does the job have?

Are the later stages
running longer

leading to higher
run times?

Breaking the job into intermediate
steps not more than 4 stages each.
Shuffling in Prior stages has most

likely led to sub-optimal data
distribution

Does the job
involve a join?

Does the join
involve one large
and one or more
relatively smaller
tables (~100 MM

rows of 5 columns
is small for ZS

workloads)

Does the SQL plan
in Spark UI or the
execution plan on

shell show ALL
small tables being

Broadcast?

Add explicit
broadcast hints for
all small tables, be
sure to use aliases
in the hint if aliases
are defined in the

SQL

Check if
summary task
Metrics for join

stage shows disk
spill over or

straggler tasks

Is the 1:n join
between fact and

dimension that will
cause fact data

rows to multiply?

Increase
spark.sql.shuffle.parttions
by 3-5X and check if the
problem is eliminated. 

Note that this can result in
smaller files in the output

and a step to coalesce data
into fewer partitions at the
end will benefit any direct

consumers

Repartition fact data right
after it is read to increase

the number of data
partitions available for the

join step. Increasing
spark.sql.shuffle.parttions
can also help the join step

run faster with more
partitions

Does the job
involve aggregation

A sort-merger join
will be used in such
cases. Check if the

stages running
longest Is tied to

merge step or one
of sort steps

Partitioning or bucketing
source data can

significantly boost
performance, best done if

more than one job will
benefit from this job will

benefit from this sorting and
bucketing

Check Summary
task Metrics for

disk spill Over or
straggler tasks

Add more cores to the process,
either by providing more executors

or more cores per executors
(Provided no spill over happens)

If few straggler tasks exist, check
for skewed keys or uneven input file

splits

Add additional keys and create an intermediate
aggregate followed by a final aggregate

Repartition input data to create more even file splits

Increase executor memory or reduce cores per
executor

Does the job
involve Window

functions?
Each Window function will behave like a separate job so

essentially you are looking at many jobs clubbed together.
Best way to tine this type of job is combine steps needing the

same window partitions into one step and break out others
into different steps

Does the job slow down at the final write stage when data is
being written to s3?

Check if you are using the latest S3commiter
configuration from the CC team, have speculation

turned off, and if need be switch to Gzip
compression for faster writes

To be continued

Increase the number of
cores available to the job

by either increasing number
of executors or increasing
the cores per executor. If

the peak memory used by
tasks is low, changing

#cores per executor will be
most helpful

Check for skewed keys that
will lead to disproportionate

multiplication of data
causing some tasks to spill

over while others to run
well. Filter such keys out

into a separate dataset and
optimize both joins

separately (broadcast with
very fine partitions for

dataset with skewed keys)

Check if summary
task Metrics shows

a near even run
time for tasks
across all the

quartiles

NO

YES

YES

NO

NO

YESYES

Skewed Keys

Uneven File
Splits

All tasks show  
spill-over

YES

NO

>4

<=4

NO

YES

YES

YES

YES

NO M
er

ge

St
ag

e

YES

NO

NO

YES

YES

Problem
Persists

Sort Stage

!13

Read cust
level sales

data (335MM)

Prep
dimensions

for joins

Join with
Time bucket
dimension

(1.3B rows)

Aggregate
(332MM

rows)

Join with
Product

dimension
(1.7 B rows)

Aggregate &
write to S3

(1.15 B rows)

Read back
Market data

(412MM)

Replicate
each market
row for all
products in
the market
and write to

S3
(6.2B rows)

Fairly fast Reasonably
fast

Reasonably
fast

▪ No broadcast
▪ Some disk spill-over

Reasonably
fast

Reasonably
fast

▪ No broadcast
▪ Very large disk spill-

over

Optimization:
Source data

partitions + More
cores (scales up

to connection
limit)

Optimization:
Broadcast join

+
More partitions

+
More cores

Optimization:
More partitions

+
More cores

Optimization:
Broadcast join

+
More partitions

+
More memory
per task / core
(bigger nodes)

Optimization:
More partitions

+
More cores

Optimization:
More cores

Optimization:
Broadcast join +
Large number of
partitions +
More memory per
node

Here is an example of tuning work done by a Spark
expert

Original performance: ~1 hour on 40 nodes (160 cores, 1280 GB memory); ~1 hour on 80 nodes (320 cores, 2560 GB memory)
Revised performance: ~40 min on 20 nodes (160 cores, 1280 GB memory); ~20 min (320 cores, 2560 GB memory)

!14

Calling many APIs in parallel, Spark can
help!

Call REST
API

Spark Map()

RDD

Make API Call

Handle Errors & Retries

Parse Return Response

Col 1 Col 2
A1 B1
A2 B2
A3 B3
A4 B4

R1 R2 R3 R4 R N

UDF

Col 1 Col 2 Response Error Code
A1 B1 R1 Null
A2 B2 R2 Null
A3 B3 R3 Null
A4 B4 Null 500

Input
Output

UDF Definition

def api_caller(x):

 r =
post(url=url,data=json.dumps(data),headers=final_headers)
 response = r.json()['Id']
 return Row(Response= str(x[0]))

Map function to run for each df row

input_df = spark.sql("""select * from <table>"""

mapped_batch_df = df.rdd.map(api_caller).toDF()

!15

DevOps for Data Platforms

DevOps for data platforms is hard!

Rule metadata and input data change more often than code

Recommendations:

Hold data and rule metadata constant to test codes first

Create pipelines to test integrated code, rule metadata, and data together

Think of threshold based test cases rather than absolute for integration tests

!16

Architecting for Adaptability

Mature cloud users are pivoting towards microservices architecture patterns
based on AWS Lambda, AWS ECS, Docker-Kubernetes, etc.

Design modules by first defining API signatures even if not building
microservices for future compatibility

Micro-APIs in AWS Lambda can easily be designed for reusability, think
cluster management, job auditing, notification, partition refresh, etc.

