
Low-code, GraphQL, Serverless Platform

2019

IMCS June 2019

Courtney Robinson
Founder & CEO of Hypi; Jack of all trades and worse PhD student ever…so let’s skip the hard questions

The Descent

We’ll start out easy and work our way down.
…and hopefully back out again

 Hypi
The Platform & business fluffy stuff

 GraphQL
Gr what, what is this thing…?

Graphs
…real ones

Categories
…hmmm

 Apache Ignite
oh finally, something sensible!

 FM Index
Radio…waves…stations, huh?

Cascading Vertices
…ummm

Wormholes
…eh?

HEAD OF PRODUCT

The Core Team

Rochelle Singh | Courtney Robinson | Damion Robinson | Jennicka Buckingham | Pawel Ungier
CEOCTO HEAD OF BRAND HEAD OF SALES

A Little Bit About Hypi

One API, any platform
 Hypi takes data model and in seconds turn it into a highly available,

distributed, serverless backend API. 

Takes project development down to a fraction of the time. 

Includes serverless functions with built-in storage and Identity and
Access Management (UMA ish). 

Hypi Hyper Cloud enables development against a single API to

integrate with any public or private cloud.

What is it?

• Serveless Functions

• On Demand Service Provisioning

• Service & Resource sharing

• Low code, no code Applications

In short, Hypi gives all the benefits of grid computing but reduces the complexity & cost of running the “conventional” way.

What does that mean?

•Hypi. has storage

• It has compute

• It has authorisation

• It is scalable (just add more nodes)

• It is extensible

The Platform

Hypi is a declarative platform.

It lets you declare a desired end state and Hypi figures out how to get to that state.
 

Hypi Universe has a core set of features baked into the Hypi services.
 

Hyper Cloud builds our Delta Grid enabling automatic integration with services
(Hypi provided or custom integrations).  

 
This lean combination drastically reduces development time, if a project’s model

and UI can be prototyped in a day, the platform lets you ship it in a day!

�9
Hypi Universe

Api
Auto generated from a GraphQL model,
one consistent API for core and
multi-cloud services

Hyper Cloud
Proxy

Allows the definition of application
secrets/credentials that are needed to access
3rd party APIs. The third party APIs together
form the Hypi Delta Grid

Delta Grid
Machine Learning
OCR Entity Extraction - Allows extraction and
identification of contents from images

Facial Recognition - Facial verification,
identification, age detection, gender and
emotions.

General (Ignite/Tensorflow) - Custom machine
learning based on Tensorflow. Preprocessing,
Partition Based Dataset, Linear Regression,
K-Means Clustering, Genetic Algorithms,
Multilayer perceptron, Decision Trees, k-NN
Classification, k-NN Regression, SVM Binary
Classification, SVM Multi-class Classification.

Video processing
Per 1K mins stored/viewed (Cloudflare) - billed
per 1K minutes stored and viewed

Per GB stored/transferred - billed per GB
stored/transferred

Payment Processing
Allows apps to collect credit/debit card
payements
Stripe
SIBS
PayPal
Braintree
Square

Fulltext search
allows data to be “Indexed” so that it can
be searched against

Scripting
Allows submission of JavaScript, entire
Java classes, single Java functions or
single Java expressions that can be
executed before or after CRUD functions
or associated with custom GraphQL
functions

CRUD
Create, Read, Update and Delete (+
trash) APIs

IaM
Identity and Access management
todefine organisation structure, groups,
policies and permissions

Storage
Simple APIs to upload files of any kind
that can be downloaded or otherwise
used later.

Delta Grid

Hyper Cloud
Proxy

Hypi Universe
API
 Fulltext search
 CRUD
 IaM
Scripting
Storage

Platform

For any Hypi Application

✓Storage

✓Compute

✓Authorisation

•Extensible

Product,
Model & Go!

create, update, read/search, delete
Store Index Learn

Stream Auth ++

Cloud

Internet

Extensible

✓Storage

✓Compute

✓Authorisation

✓Extensible

Product,
Model & Go!

create, update, read/search, delete
St In Le

Str Au +

Cl

Your Function

Your Docker

Public Cloud Private Cloud

�12

Enough of that, on to the
reason we’re all here…the
how… how do we do it?

�13

Magic!
Joking

…probably

�14

GraphQL

• Declarative, type based framework, language, standard…may be easier to say what it isn’t

• Expressive, any model that can be expressed through an OOP object model can be expressed with
GraphQL

• Succinct, one of the points FB sells it on. Useful in low/expensive bandwidth situations

• Flexible, use directives to add features/semantics

• Growing adoption, can hardly be dismissed as a fad anymore

�15

Let’s build a todo app

1. Create todo item
2. Complete todo item
3. Add comments to todo items
4. Search for todo items
5.Paginate through todo items
6. Trash todo items
7. Add attachments to todo items
8. Create groups of todo items
9. Share individual todo items
10. Share groups
11.Delete todo items
12.Delete groups

Possible features:

For this talk we will focus on
1. Create todo item
2. Complete todo item
3. Add comments to todo items
4. Search for todo items

�16

What does it look like?

For this talk we will focus on
1. Create todo item
2. Complete todo item
3. Add comments to todo items
4. Search for todo items

1.Paginate through todo items
2. Trash todo items
3. Add attachments to todo items
4. Create groups of todo items
5. Share individual todo items
6. Share groups
7.Delete todo items
8.Delete groups

...I lied a little
From this model, you can already do all
of these

�17

What did you see?

�18

Hypi saw relations
Relations means graph
…Graph means categories, categories means graph, graph means categories, categories…well, you get the idea

Only a few slides in and we’re already in recursive hell

Let’s get real
Graphs in review

A graph G is made up of a set of vertices and edges,
G = (V,E)

A Vertex is a single datum within a graph.
An edge connects two vertices.

A property is a key-value pair on an edge or vertex.

V1

V6
V4

V5
V2

V3

V7

Distributed systems
CAP theorem anyone?

Consistency, Availability & Partition tolerance…choose two?
 

It’s a hard life, so we choose…discipline.
Draw upon some set theory to take advantage of a winning combination.

1. Commutativity
2. Idempotence

3. Associativity

For more checkout CRDTs, in particular, how join-semi lattice is used

(1 ∪ 2) ∪ 3 = 1 ∪ (2 ∪ 3)
1 ∪ 2 = 2 ∪ 1

1 ∪ 1 = 1

Associative

Commutative
Idempotent!

Bare in mind for later

{a,b,c,d} :⇔ {a,b} ∪ {c,d}

Category Theory
at least the bit I didn’t get bored of anyway…

• Think of a category as a collection of objects with arrows
between them with the 3 properties

1. Composition
2. Identity
3. Associativity

Wait…didn’t you just call those
something else?

Basic category theory becomes the basis for describing
distributed graph computations. 

 
Interesting because things that hold true in category theory

generally holds true when graph computing is reasoned about
with it.

Put it all together
and you get…

Distributed
Graph Computing
…he claims

Wormhole traversals
brought to you by CR…get it?

Graphs can get pretty big. Big enough not to fit one a single machine.
Imagine red letters are on different drives or machines. 

Imagine the graph was immutable…

At its simplest, wormhole traversals enables jumping from A to G or  
any other of the vertices in red.

The cost?

1. ~7% disk overhead for 20 - 35% speedup.
2. ~5 - 15% configurable memory overhead for an additional 13-27% speedup. 

A B C

D

E
F

G

Remember this?

Look at G of F, it more or less says the same thing

Cascading vertices
Power to the vertex!

Graphs can get pretty big…I said that already… 
Vertices can get pretty big, big enough not to fit on a single machine.

Promise I’m not just repeating myself…the graph is.
• “Cascading vertices” is a technique for partitioning

• Addresses the power law distribution
• The edges of a vertex cascade over multiple servers

• Twitter followers as an example e.g. Obama, massive vertex
• Simple threshold base cascading

• Impl. based on vertex degree
• Experimenting with ML base placements

S1

S2

S3

{}

{}

add(…) x f

{a,b…n/threshold}
add(…) x f

= insert = cascade

add(…) performs a
cascade(deg(V))

{r,s…n/2*threshold}

cascade(deg(v)) >=
threshold

add(…) x f

{w,x…n/3*threshold}

wrap and repeat

{}

Remember this?

{a,b,c,d} :⇔ {a,b} ∪ {c,d}

That is to say, some arbitrary set
S if split into n parts can
be unioned to obtain the
equivalent original set

If it matters to you, the important thing is isomorphism i.e. structural equivalence. It matters both here and
in wormhole traversals.

FM Indexes
or how we hang this all together

Succinct data structure i.e. space "close" to the information-theoretic lower bound
Hypi version combines

1. Radix Trie
2.Burrows-Wheeler transform

3.Huffman encoding
As a basis for a new in memory encoding.

No need to deserialise compressed/encoded data to use
Still get prefix traversals i.e. given this vertex, find all connected vertices
In addition, enables O(k) reply to "are these two edges connected" where k is length of input (UUID in our case)

From Wikipedia

Ignite, bringing it all together
whoohoo, we’re back!

Hypi implemented using KV APIs for caches instead of SQL APIs.

Recent project with:
1.2+ billion vertices, 7+ billion edges

10ms 99 percentile query time
only 15 servers, 500GB RAM and nearly 3TB disk usage.

�27

Wormholes
An optimisation that allows you to skip vertices during traversal

FM Index
It's like a BloomFilter for Graphs...kinda

Graphs
Implicit through the GraphQL model

Cascading Vertices
Partitioning of super-vertices

Ignite: How we hook in

• Affinity runs
• use Lucene for indexing
• FM index for relationships, falling back to Lucene

• Ignite’s affinity keys are used to implement vertex
cascading
• We get relatively slow writes (sometimes read before

write)

�29

Some key points
• Every GraphQL type results in one Ignite cache

• Each Ignite cache has one lucene index and one RocksDB database

• Each Ignite cache is shared if two tenants have the same GraphQL type name

• Dedicated tenant caches are planned for Q4 2019

• Each RocksDB database is also shared

• Each tenant gets a RocksDB Column Family

• Relationship references are stored in the target Lucene index

• FMIndex partially rebuilt from disk references on startup then rest is populated on demand

Instant CRUD API

type Item {

slug: String
summary: String!

comments: [Comment!]
}

findItem(arcql: String): [Item!]

createItem(values: [Item!]!): [Item!]
updateItem(values: [Item!]!): [Item!]

deleteItem(arcql: String!): [Item!]
trashItem(arcql: String!): [Item!]

Arc Query Language i.e. Arc QL
Simple, intuitive, familiar!

<query> <sort> <from> <limit>

FROM ‘<pagination-cursor>’ 

SORT fieldName ASC | DESC 

LIMIT <N>

Query types
• Term - fieldName = ‘value’
• Phrase - fieldName ~ ‘some value’
• Prefix - fieldName ^ ‘music’
• Wildcard - fieldName * ‘mu?ic*’
• Fuzzy - ~fieldName~ ‘name’
• Range - fieldName IN [0, 100)
• Match all - *

• EXIST

• NOT EXIST

• INNER JOIN (implicit e.g. a.b.c = 'xyz'

• LEFT JOIN

• REFS FROM...WHERE (optional)

• link

• unlink

• subscribe (for realtime updates on IDs and near real time on queries)

Distributed Query Engine (Evaluates GQL + ArcQL)

Arc OS - Platform Architecture

GraphQL Engine

Query Tree Algebra

Ignite
Key value Cache API

Arc Affinity Function

Arc Cache Store RocksDB CacheStore Lucene CacheStore

Auth Policy EngineDistributed Query
Engine

Graph Traversal Engine

FMIndex

+ other data structures

Affinity run

Serverless Engine
 

Local, low latency 
OR 

External, Docker based

Ignite Cluster

Arc OS - Affinity Function & Query Routing

Query & Data Routing

• f : key => partition

• Rendezvous hashing based on

• Type of key

• Node requirements

• Cache name

Lucene Lucene Lucene

london
ssd

paris
ssd

berlin
ssd

RocksDB RocksDB RocksDB

london
ssd

paris
ssd

berlin
ssd

put(key)

Arc Affinity Function

get(key)

• Double query required to

filter

• Average <5ms to do both

�34

Thank you
Hypi cloud service will be in public beta June 2019. 

courtney.robinson@hypi.io for an invite, 3 months free use.

There was a lot glossed over here…any questions?

mailto:courtney.robinson@hypi.io

