
Interactive Historical Data Analysis

Javi Carretero, Technical Architect 
TrendMiner  

04/06/19

!2

Plan

❖ Introduce TrendMiner
❖ Discuss context & user needs
❖ TrendMiner 1.0
❖ TrendMiner 2.0 (with Apache Ignite)
❖ Challenges
❖ Future work

!3

TrendMiner

Empower process and asset experts with advanced analytics to Analyse,
Monitor and Predict the operational performance of batch, grade and

continuous manufacturing processes.

We democratise analytics by giving insights to the people who need
answers: the engineers and operators in the plant.

Data Science Domain Expertise

!4

TrendMiner

!5

TrendMiner

Time Series

Descriptive
Analytics

Predictive
Analytics

Modelling

!6

TrendMiner

Context & Scale
❖ > 300M points per time series
❖ 10-40K active time series
❖ Source of data is generally very slow!

Responsiveness

Overall performance

User Expectations
❖ Time to first result < 1s
❖ Higher resolution
❖ More active time series
❖ More advanced analytics

 TrendMiner 1.0
Focus on responsiveness (making TrendMiner more interactive)

!8

TrendMiner 1.0

TrendMiner

Source

File-based

Algorithms

Streaming back to UI
Fast for small queries

Not scalable

Not scalable
Slow for big queries

 TrendMiner 2.0
Focus on performance (making TrendMiner more efficient)

!10

TrendMiner 2.0 - Caching

Time Series

Time Slices

t

IgniteCache<Key, Data>

t0 tN

t0 t1 t2 t3 t4 t5 t6 tN

startDate (ti)
endDate (tj)
timeSeriesId

[ts0, value0]
[ts1, value1]
[ts2, value2]

!11

TrendMiner 2.0 - Caching

S1 S2 S3 S4 S5 S6 S7

2019-06-04 16:20:15.165

2019-06-04 16:20:15.165

2019-06-04 16:20:15.165

2019-06-04 16:20:15.165

2019-06-04 16:20:15.165

Point timestamp

Slice by hour

Slice by day

Slice by month

Slice by year

Scalability Performance

Time Slices

!12

TrendMiner 2.0 - Affinity

S1 S2 S3 S4 S5 S6 S7

Time Series X

S1 S2 S3 S4 S5 S6 S7

Time Series Y

Si Nodej
(all Time Series)

e.g: 2019-06-04

!13

TrendMiner 2.0 - Compute Grid

Existing algorithms

Chronological swipe

B. Scatter "jobs" = affinityCall

S1 S2 S3 S4 S5 S6 S7

S1

S3

S2

S6

S4

S7

S5

Data Point
Data Point (meeting criteria)

Scalable algorithms = IgniteCompute

A. Split search (affects N slices)

C. Chronological swipe (single slice)
D. Post-process partial results (e.g. merging)

!14

TrendMiner 2.0 - Result

TrendMiner

Algorithms

Streaming back to UI
Fast for small queries
Fast for big queries

Source

Scalable

Scalable

!15

Challenge - Multi-level Prioritisation

Search dimensions
❖ Time Series (single vs multiple series)

❖ Search window (single vs multiple time slices)

❖ Algorithm (visualisation vs descriptive vs predictive analytics)

CPU usage

Ignite jobs

Urgency

!16

Challenge - Multi-level Prioritisation

Ignite Capabilities
❖ PriorityQueueCollisionSpi (grid.task.priority) = 1 dimension!

MultiLevelPriorityQueueCollisionSpi (custom implementation)
❖ Still use grid.task.priority

❖ Priority degression factor = #(Time Series) X #(Time Slices)

❖ Urgency via "Service Levels" (0...N) = 2nd dimension

!17

Multi-level Prioritisation (Example)

Job queue

Compute node

!18

Multi-level Prioritisation (Example)

Compute node
Compute thread

Historical search = Service Level 1

Job queue

Queued tasks have a priority (degression factor)

!19

Multi-level Prioritisation (Example)

New computation (max urgency) = Service Level 0

Compute node
Compute thread
Job queue

!20

Multi-level Prioritisation (Example)

Compute node
Compute thread
Job queue

New computation (max urgency) = Service Level 0

!21

Multi-level Prioritisation (Example)

Compute node
Compute thread
Job queue

!22

Multi-level Prioritisation (Example)

Compute node
Compute thread
Job queue

!23

Multi-level Prioritisation (Example)

Compute node
Compute thread
Job queue

Historical search = Service Level 1

!24

Multi-level Prioritisation (Example)

Compute node
Compute thread
Job queue

Historical search = Service Level 1

First task > priority (no degression factor applied)

!25

Future Work

❖ Improve scheduling efficiency (predictable job runtime)

❖ Prevent job starvation (e.g. job-stealing SPIs)

❖ Make all algorithms scalable

❖ Pave way for Ignite Native Persistence

 Thank you!
javi.carretero@trendminer.com

