
Ultra-Low Latency with Java and
Terabytes of Data
In Memory Computer Summit 2019
London

About Me

Per Minborg
● Alumni speaker: JavaOne, DevNexus and Oracle Code
● Writer: Modern Java , Oracle Java Magazine, DZone, blog
● Inventor, entrepreneur: Speedment
● Silicon Valley, Gothenburg

-1

1. Slow Databases

2. Data on Several Nodes and no Affinity Across Data

3. Data is Remote

4. Unnecessary Object Creation / Garbage Collect Problem

5. Lack of Parallelism

Why Are Applications Slow?

Data grows exponentially, which clogs systems

Slow Databases

St
or

ag
e

Ca
pa

ci
ty

 in
 E

xa
by

te
s

Low
Latency Scale Out

Low
Affinity

Several Nodes/no Affinity Across Data

Low
Latency Scale Out

Low
Affinity

Several Nodes/no Affinity Across Data

N1 N2

Σ=10 Σ=20

Σ=30

Several Nodes/no Affinity Across Data

N1 N2

Σ=10 Σ=20

Σ=30

Several Nodes/no Affinity Across Data

N1 N2

Σ=10 Σ=20

Σ=30

Several Nodes/no Affinity Across Data

N8

N4

N1 N2

N3

N5N6

N7

?

Several Object Types/Nodes/no Affinity Across Data

Low
Latency

Several Nodes/no Affinity Across Data

Scale Out

Low
Affinity

45 ms

25 µs

100 µs

Data is Remote: Laws of Nature

1-3 µs

Linux Kernel

Process
Process

Process

Process

Data is Remote: Operating System

Unnecessary Object Creation

Unnecessary Object Creation

Unnecessary Object Creation
private Map<Integer, Film> createMap() {
 return LongStream.range(0, (int) 1E9)
 .mapToObj(Main::createFilm)
 .collect(
 toMap(
 Film::getFilmId,
 Function.identity()
)
);
}

Unnecessary Object Creation
● Objects

○ Many extra objects such as Integer and Map.Entry are created
○ Subject to overhead and byte alignment
○ Long expected lifetime leads to repeated evaluation by GC
○ Difficult to retrieve objects (except for key/value), e.g. films longer than 60 s

● TreeMap for each field adds to the overhead

● gcExecutionTime(#objects) is not linear

Unnecessary Object Creation
Collection Time [s] vs. Heap Size [GB]

Co
lle

ct
io

n
Ti

m
e

[s
]

Heap Size [GB]

To write a single Java object to main memory takes 200 ns

00 00 EA B6 08 E2 02 01 00 00 01 A9 AA FF FF FE 00 01 00 10

Unnecessary Object Creation

$ nproc –all

32

$ top

 PID USER %CPU %MEM
 2105 java 100.0 5.4

 1 root 0.5 0.4

Lack of Parallelism

The Solution:

What is that...?

In-Memory

Data is in RAM

The application is remotely
connected to a grid, other
machine, other process

In-JVM-Memory

Data is in RAM

The application and
data resides in the same
JVM

In-Memory vs. In-JVM-Memory

Application

CPU Cache Latencies

64-bit Main Memory Read

In-JVM-Memory Makes Ultra-Low Latency Possible

In-Memory vs. In-JVM-Memory: Performance

Speedment
In-JVM-Memory

Grid of 4 nodes

100

75

50

25

0
0.66%

100%

Is that even possible...?

Scaling up In-JVM-Memory

Today: Scale up to 12 TB (Intel® Xeon® Processor E7-8855 v4 * 4)

Soon: Scale up to 48 TB

Scaling up In-JVM-Memory

Scaling up In-JVM-Memory

General Belief Fact
AWS “x1e.Nxlarge”

Increase Memory in the Cloud as You Grow

Co
st

 [$
/h

]
Internal RAM [GiB]

Co
st

 [$
/h

]

Internal RAM [GiB]

In-JVM-Memory Solution
Add-on for your current solution
for part of your data

High Level Sharding
Per year, region, segment 12 TB 12 TB 12 TB

America EMEA Asia

Memory Mapping
(e.g. IMDT)

12 TB 24 TB

RAM SSD

12 TB

What if I Have More Than 12 TB?

RAM SSD

What if My Data Grows?

Data with 75% correlation

In-JVM-Memory vs. In-Memory Performance

Size [GB]

Re
la

tiv
e

Pe
rfo

rm
an

ce

Low
Latency

Recap

Scale Out

Low
Affinity

Low
Latency

In-JVM-Memory Makes it Possible

Scale Up

Low
Affinity

In-JVM-Memory Solution:

https://docs.google.com/file/d/1YcoWbhPBd2RIsyqYWj5uSMXy3zBGAVQd/preview

• Continuously creates data snapshots from a
data source

• Places the copy within the JVM
• Off-Heap Data

• Off-Heap Indexing

• Operations O(1) or O(log(N))

• No Impact on Garbage Collect

JVM

Speedment: In-JVM-Memory DataStore

Speedment: In-JVM-Memory DataStore

Heap Misc

Heap MiscOff-Heap

java.util.stream.Stream

Speedment API: Java Stream ORM

Speedment API: Java Stream ORM

Declarative Constructs in SQL and Stream

SELECT * FROM FILM

 WHERE RATING = ‘PG-13’

films.stream()

 .filter(Film.RATING.equal("PG-13"))

Speedment API: Java Stream ORM

films.stream()
 .filter(Film.RATING.equal("PG-13"))
 .count();

Process Data without Creating Intermediate Objects

Process Data without Creating Intermediate Objects

films.stream()
 .filter(Film.RATING.equal("PG-13"))
 .collect(toJsonLengthAndTitle());

index film_id length rating year language title
[0] 0 267 267 0 0 0

[1] 267 0 0 267 267 267

[2] 523 523 523 523 523 523

index film_id
0

length
4

rating
12

year
16

language
20

Title
…

[0] 1 123 PG-13 2006 1 ACAD..

[267] 2 69 G 2006 1 ACE G…
[523] 3 134 PG-13 2006 1 ADAP…

Speedment Can Process Data without Creating Intermediate Objects

films.stream()
 .filter(Film.RATING.equal("PG-13"))
 .collect(toJsonLengthAndTitle());

Speedment: Off-Heap Joins/Aggregations

var join = joinComponent
.from(FilmManager.IDENTIFIER)
.innerJoinOn(Language.LANGUAGE_ID).equal(Film.LANGUAGE_ID)
.build(Tuples::of);

Speedment: Off-Heap Joins/Aggregations

var offHeapAggregator = Aggregator.builder(Result::new)
.on(Film.LANGUAGE_ID).key(Result::setLanguage)
.on(Film.RATING).key(Result::setRating)
.on(Film.LENGTH).average(Result::setAverage)
.build();

Speedment: Off-Heap Joins/Aggregations

var result = join.stream()
.collect(offHeapAggregator);

Speedment: Parallel Processing

join.stream()
.parallel()
.collect(offHeapAggregator);

$ nproc –all

32

$ top

 PID USER %CPU %MEM
 2107 java 3170.0 5.4

 1 root 0.5 0.4

Speedment: Parallel Processing

Demo: Download Sakila Example Database

@Benchmark
public long filterAndCount() {

return films.stream()
.filter(RATING_EQUALS_PG_13)
.count();

}

1

2

JVM

Demo: Stream

Demo: Initialize the Project

www.speedment.com/initializer

Demo: Connect to the Sakila Database

Demo: Generate the Domain Model

Demo

Ultra-Low Latency (Lower is Better)
Stream Latency vs. JDK

St
re

am
 L

at
en

cy
 [

ns
]

Java Runtime

Easy Integration: Any Data Source

Deploy Anywhere

IDE Integration

Web Service Integration

Thanks!
E-mail
minborg@speedment.com

Free Trial:
www.speedment.com/initializer

http://www.speedment.com/initializer

• What if I have a transactional application?

• How to pin down my app to a specific CPU?

• How does memory management work off-heap?

• I have data in a no-SQL database or on file?

• How does the snapshot affect application startup?

• If I stream over a kazillion objects, won’t my heap overflow?

• Does Speedment rely on C, C++ libraries or native code?

But wait...

index film_id length rating year language title
[0] 0 267 267 0 0 0

[1] 267 0 0 267 267 267

[2] 523 523 523 523 523 523

index film_id
0

length
4

rating
12

year
16

language
20

Title
…

[0] 1 123 PG-13 2006 1 ACAD..

[267] 2 69 G 2006 1 ACE G…
[523] 3 134 PG-13 2006 1 ADAP…

Speedment Can Process Data without Creating Intermediate Objects

films.stream()
 .filter(Film.RATING.equal("PG-13"))
 .collect(toJsonLengthAndTitle());

Outline

1. Objects on the Stack

2. Proper Performance Testing

3. Short-circuit Streams for Massive Performance Gain

4. Holding Terabytes of Data in the JVM with no GC impact

5. Create Large Aggregations of Data without Intermediate Objects

CPU Cache Latencies

64-bit Main Memory Read

In-JVM-Memory Makes Ultra-Low Latency Possible

films.stream()
 .filter(Film.RATING.equal("PG-13"))
 .count();

Process Data without Creating Intermediate Objects

