
!1

Healthcare Outbounds: Unbounded Scalability

Robert Stephens, Director of Revenue Cycle Development
Sujoy Acharya, Director & Principal Engineer

!3

TalkConfiguration<Integer, String> agenda

agenda.put(1, “The Problem Statement”);

agenda.put(2, “v1. High level Design”);

agenda.put(3, “SP Results”);

agenda.put(4, “v2. Redesigning the system with Apache Ignite”);

agenda.put(5, “v3. Refactoring”);

agenda.put(6, “Q/A”);

 Outbound
The Problem Statement

!5

Performance Bottleneck

System Updates need to be echoed out to other systems in real time. As these
updates need to be sent in sequence , The time spent transforming the data into
output format becomes a bottleneck for clients with large volume.

Each echo contains a large quantity of patient data.

In addition to being able to handle a peak period load, The system must be able to
recover and backload due to an outage in a reasonable timeframe.  

 

!6

Background

Healthcare revenue cycle product used in United States and global market

Includes Scheduling, Registration, Patient Accounting

The registration ADT (Admission, Discharge, Transfer) transaction data
needs to be sent out to other systems in HL7 format

Java platform with horizontal scaling

Challenged to scale the outbound interface for larger clients 

!7

Options

Tune code

Scale vertical (Bigger Servers)

Execute transformation sooner

Process in parallel.  
This approach seemed best  

 High Level Design
V1. Database Driven Design

!9

Initial Design

!10

Initial Design

key1=bed01

key1=bed999

key1=bed01

TransactionID Key1 … Key12 Status

Seq No TransactionI
D

Key

t001 bed01 Processing

t001 bed011

t002 bed999 Processing

2 t002 bed999

t003 bed01 Waiting

3 t003 bed01

Processing

 Results
Stored Proc

!13

Processing Rate

 Re-Designing
In-memory Architecture

!15

@DataAccessPoints()

Insert Check Remove

Update

!16

@Cacheable?

!17

new SqlQuery(Check, “Dependency")

!18

new InsertQuery(Dependency, “Status")

!19

new RemoveQuery(Release, “Dependant")

!20

new Result(Metrics)

 Refactoring
Algorithm

!22

Durable Memory

!23

Results

Tier Transactions Dependent Tx Total Processing
Time

CRUD Operation
Time

Database 50,000 100 73 minutes 42 minutes
IMDG 50,000 100 44 minutes 3.5 minutes

!24

QA

!25

References

[1]. 50 lane traffic - https://www.citylab.com/transportation/2015/10/chinas-50-lane-
traffic-jam-is-every-commuters-worst-nightmare/409639/
[2]. SQL grid - https://files.readme.io/ee4c650-SQL-Grid-Diagram_v4.png
[3]. Memory grid - https://files.readme.io/9d858ef-Durable_Memory_Diagram.png
[4]. SQL - https://apacheignite-sql.readme.io/docs/performance-and-debugging

https://www.citylab.com/transportation/2015/10/chinas-50-lane-traffic-jam-is-every-commuters-worst-nightmare/409639/
https://www.citylab.com/transportation/2015/10/chinas-50-lane-traffic-jam-is-every-commuters-worst-nightmare/409639/
https://www.citylab.com/transportation/2015/10/chinas-50-lane-traffic-jam-is-every-commuters-worst-nightmare/409639/
https://files.readme.io/ee4c650-SQL-Grid-Diagram_v4.png
https://files.readme.io/9d858ef-Durable_Memory_Diagram.png
https://apacheignite-sql.readme.io/docs/performance-and-debugging

