
How to Test the Ability of Large-Scale, Distributed
Software Systems to Cope with Failures

Pavel Lipsky 
Dell Technologies 

06/04/2019

!2

Who am I?

Pavel Lipsky

Before 2005
Building scalable web sites

From 2005 to 2014
Test automation and DevOps

From 2014
Performance and reliability of large-scale,
distributed systems https://github.com/leapsky

!3

Agenda

• What is Fault Injection?

• Test Object

• Stories & Demos - https://github.com/leapsky

• Tools & Frameworks

 Story 1
Memcached

!5

Fetching Data from Memcached

Application

Memcached

Database

1

3

2

5

4

!6

Changing Data in Memcached

Application
1

5

Database

Memcached

3

2

4

!7

Types of Software Testing

Functional testing

Load testing

Usability testing

Security testing

Fault Injection

 Story 2

!9

Payments for Goods with Payment Cards
Issued by Russian Banks

!10

New IT Platform

• Horizontal scaling
• Using open-source software
• Affordable low-end hardware
• Reliability
• Storing data in RAM

!11

GridGain Enterprise

• SQL support
• Quick access to objects by key
• In-memory computing
• Persistent Data Store
• Strong consistency
• Failure resistance
• Horizontal scalability
• …

!12

Forcing a System to Fail

“Without explicitly forcing a
system to fail, it is unreasonable
to have any confidence it will
operate correctly in failure
modes.”Caitie McCaffrey (Backed Brat & Distributed Systems

Diva),
The Verification of a Distributed System

 Story 3
Lost Updates

!14

Example of Fund Transfer

1.	read(A) 
2.	A	:=	A	-	50 
3.	write(A) 
4.	read(B) 
5.	B	:=	B	+	50 
6.	write(B)	 

!15

Fund Transfers Between Bank Accounts

 3 4

 1

 7

 2 5

 6

 8 9
10

$50

$20

$100

$3

$18$95
$100

$100 $100

$100

$100

$100

$100

$100 $100

 Demo Time
Lost Updates

!17

Lost Updates

T1	read(A)	 
T2	A:=	A	-	50													 
T3	write(A)																								
T4																							
T5	…																																					

Task
1

Task 2

Expected value of А is $50
Real value of A is $0

А := $50

read(A)	 
A	:=	A	-	50													 

write(A)																							
…																																					

 Story 4
ACID

!19

ACID Properties

• Atomicity
• Consistenc

y
• Isolation
• Durability
 

1.	read(A) 
2.	A	:=	A	-	50 
3.	write(A) 
4.	read(B) 
5.	B	:=	B	+	50 
6.	write(B)	 

!20

Isolation Levels and the ANSI/ISO SQL
Standard

Isolation Levels Dirty Read Non-Repeatable Read Phantom Read

READ
UNCOMMITTED

Permitted Permitted Permitted

READ COMMITTED -- Permitted Permitted

REPEATABLE READ -- -- Permitted

SERIALIZABLE -- -- --

!21

READ_COMMITTED

Transaction 1 Transaction 2

Expected value of А is
$50
Real value of A is $100

А :=
$50

T1	read(A)	 
T2	A:=	A	-	50													 
T3	write(A)																								
T4	commit																						
T5	…																																					

read(A)	 
A	:=	A	+	50													 

write(A)																							
commit																																					

!22

Apache Ignite Concurrency Modes and
Isolation Levels

Isolation Levels

• READ_COMMITTE
D

• REPEATABLE_REA
D

• SERIALIZABLE

Concurrency Modes

• PESSIMISTIC

• OPTIMISTIC

!23

Apache Ignite Documentation: Concurrency
Modes and Isolation Levels

PESSIMISTIC REPEATABLE_READ - Entry lock is acquired and data is fetched
from the primary node on the first read or write access and stored in the local
transactional map. All consecutive access to the same data is local and will return
the last read or updated transaction value. This means no other concurrent
transactions can make changes to the locked data, and you are getting
Repeatable Reads for your transaction.

OPTIMISTIC SERIALIZABLE - Stores an entry version upon first read access.
Ignite will fail a transaction at the commit stage if the Ignite engine detects that at
least one of the entries used as part of the initiated transaction has been modified.

 Demo Time
Transactions

!25

.txStart(CONCURRENCY_MODE,
ISOLATION_LEVEL)

try	(Transaction	tx	=	ignite.transactions().txStart(OPTIMISTIC,	SERIALIZABLE))	{ 
				Account	fromAccount	=	cache.get(fromAccountId); 
				Account	toAccount	=	cache.get(toAccountId); 
				...				 
				tx.commit(); 
} 

 Story 5
Testing Under Load

!27

Performance Testing Tools

 Demo Time

!29

What cache mode to choose?

1 2 3 41 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

PARTIONED REPLICATED

Primary copy Backup copy

1 2 3 4 3 4 1 2

Primary copy Backup copy

!30

.txStart(CONCURRENCY_MODE,
ISOLATION_LEVEL)

CacheConfiguration<Integer,	Account>	cfg	=	new	CacheConfiguration<>(CACHE_NAME); 
cfg.setAtomicityMode(CacheAtomicityMode.TRANSACTIONAL); 
cfg.setCacheMode(CacheMode.PARTITIONED); 
cfg.setBackups(2); 

 Demo Time

!32

Jepsen Test
lein	run	test	\	
		--test	bank	\	
		--time-limit	60	\	
		--concurrency	5	\		
		--nodes-file	nodes	\	
		--username	root	\	
		--password	root	\	
		--cache-mode	PARTITIONED	\	
		--cache-atomicity-mode	TRANSACTIONAL	\	
		--cache-write-sync-mode	FULL_SYNC	\	
		--read-from-backup	YES	\	
		--transaction-concurrency	PESSIMISTIC	\	
		--transaction-isolation	REPEATABLE_READ	\	
		--backups	2	\		
		--pds	true	\	
		--version	2.7.0	\	
		--os	debian	\	
		--nemesis	kill-node

 Story 6
Disruptive Scenarios

!34

Node failure

Application crash OS crash Hardware crash JVM crash

!35

Disruptive Scenarios

• Hardware

• Network

• Application
• Other scenarios

!36

Disruptive Scenarios: Hardware

Primary
partition Backup

partitions

2 3 4 5 4 5 6 7 6 7 8 1 8 1 2 31 2 3 4 3 4 5 6 5 6 7 8 7 8 1 2

Data Center
#1

Data Center
#2

!37

Disruptive Scenarios: Hardware

Primary
partition Backup

partitions

2 3 4 5 4 5 6 7 6 7 8 1 8 1 2 31 2 3 4 3 4 5 6 5 6 7 8 7 8 1 2

Data Center
#1

Data Center
#2

!38

Disruptive Scenarios: Network

• iptables

• NetEm emulates:
• network delays with different distribution
functions
• packet loss
• repeat packets
• reordering of packets
• packet distortion

!39

Disruptive Scenarios: Network

2 3 4 5 4 5 6 7 6 7 8 1 8 1 2 31 2 3 4 3 4 5 6 5 6 7 8 7 8 1 2

Data Center
#1

Data Center
#2

!40

Disruptive Scenarios: Application

!41

Disruptive Scenarios: Application

Presentation Layer (UI)

Integration Layer (Kafka & ZeroMQ)

Business Modules

Data Storage & Computing (GridGain)

Logging, Access Granting

!42

Disruptive Scenarios: Other Scenarios

!43

Tools to start using Fault Injection
Code examples

https://github.com/leapsky/FaultInjectionExamples

Frameworks

Jepsen - https://github.com/jepsen-io/jepsen
Chaos Monkey - https://github.com/Netflix/SimianArmy/wiki/Chaos-
Monkey

Linux Utilities

NetEm (tc) - https://wiki.linuxfoundation.org/networking/netem
stress-ng - https://manned.org/stress-ng/fd34c972
Iperf - https://iperf.fr

kill -9
iptables

Load testing tools

JMeter - https://
jmeter.apache.org

Configuration Management

Ansible - https://
docs.ansible.com
Puppet - https://puppet.com

https://github.com/leapsky/FaultInjectionExamples
https://github.com/jepsen-io/jepsen
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://wiki.linuxfoundation.org/networking/netem
https://manned.org/stress-ng/fd34c972
https://iperf.fr/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://docs.ansible.com/
https://docs.ansible.com/
https://puppet.com/

!44

Lessons Learned

• Fault Injection is the art of explicitly forcing a system to
fail to make sure that it will operate correctly in failure
modes.

• No risk - no test!

• Test results must be clear and unambiguous.

• The closer your test environments match your
production environments, the more accurate your
testing will be.

!45

Thank you! Questions?

Pavel Lipsky

pavel.lipsky@gmail.com

https://github.com/jepsen-io/jepsen/tree/master/ignite

https://github.com/leapsky/

mailto:pavel.lipsky@gmail.com
https://github.com/jepsen-io/jepsen/tree/master/ignite
https://github.com/leapsky/

