
Redis and Memcached

Speaker: Vladimir Zivkovic, Manager, IT 
June, 2019

!2

Problem Scenario

• Web Site users wanting to access data extremely quickly (< 200ms)
• Data being shared between different layers of the stack
• Cache a web page sessions

• Research and test feasibility of using Redis as a solution for storing and
retrieving data quickly

• Load data into Redis to test ETL feasibility and Performance
• Goal - get sub-second response for API calls for retrieving data

!3

Why Redis

• In-memory key-value store, with persistence
• Open source
• Written in C
• It can handle up to 2^32 keys, and was tested in practice to handle at least

250 million of keys per instance.” - http://redis.io/topics/faq
• Most popular key-value store - http://db-engines.com/en/ranking

!4

History

• REmote DIctionary Server

• Released in 2009

• Built in order to scale a website: http://lloogg.com/

• The web application of lloogg was an ajax app to show the site traffic in real time.
Needed a DB handling fast writes, and fast ”get latest N items” operation.

http://lloogg.com/

!5

Redis Data types

• Strings

• Lists

• Sets

• Sorted Sets

• Hashes

• Bitmaps

• Hyperlogs

• Geospatial Indexes

!6

Redis protocol

• redis[“key”] = “value”

• Values can be strings, lists or sets

• Push and pop elements (atomic)

• Fetch arbitrary set and array elements

• Sorting

• Data is written to disk asynchronously

!7

Memory Footprint

• An empty instance uses ~ 3MB of memory.

• For 1 Million small Keys => String Value pairs use ~ 85MB of memory.

• 1 Million Keys => Hash value, representing an object with 5 fields, use ~
160 MB of memory.

!8

Installing Redis

wget	http://download.redis.io/redis-stable.tar.gz	

tar	xvzf	redis-stable.tar.gz	
cd	redis-stable	

make	

redis-cli	ping	

#	PONG

!9

Starting Redis

!10

Redis CLI

!11

Basic Operations

• Get/Sets – keys are strings, just quote spaces:

• Set Value as Integer and increase it:

• Get multiple values at once:

!12

Basic Operations - continued

• Delete key:

• Keys are lazily expired:

!13

Atomic Operations

• GETSET puts a different value inside a key, retrieving the old one:

• SETNX sets a value only if it does not exist:

!14

List Operations

• Lists are ordinary linked lists.
• You can push and pop at both sides, extract

range, resize.

• BLPOP – Blocking POP – wait until a list has
elements and pop them.
• Useful for real-time stuff.

!15

Set Operations

• Sets are sets of unique values with push, pop...
• Sets can be intersected/diffed and union’ed on the server side

!16

Sorted Sets

• Same as sets, but with score per element

!17

Hashes

• Hash tables as values

• Like object store with atomic
access to object members

!18

Hashes

!19

Pub/Sub

• Clients can subscribe to channels or patterns and receive notifications when
messages are sent to channels.

• Subscribing is O(1), posting messages is O(n)
• Useful for chats, real-time analytics, twitter

!20

Publish / Subscribe

!21

Sort Keys

!22

Transactions

• Redis transaction is initiated by command MULTI and then you need to
pass a list of commands that should be executed in the transaction, after
which the entire transaction is executed by EXEC command.

 

• Transactions can be discarded with DISCARD.

!23

Integration between Database and Redis

• All front-end data is in RAM, denormalized and optimized for speed.
• Front-end talks only to Redis.
• Usage of Redis set features as keys and scoring vectors.
• All back-end data is on mysql, with a manageable, normalized schema.
• Admin talks only to MySql.
• Sync queue in the middle keeps both ends up to date.
• ORM is used to manage and sync data.
• Automated indexing in Redis generates models from MySql.

!24

Redis Security

• It is designed to be accessed by trusted clients inside trusted environments.

Network security
• Access to the Redis port should be denied to everybody but trusted clients in the

network, so the servers running Redis should be directly accessible only by the
computers implementing the application using Redis.

• Layer of authentication is optionally turned on editing the redis.conf file.
• When the authorization layer is enabled, Redis will refuse any query by

unauthenticated clients. A client can authenticate itself by sending
the AUTH command followed by the password.

!25

Redis Password

• User – granular setup

user	newuser	somepassword	*	+#readonly	-#slow	+zadd	
user	newuser2	otherpass	stats:*	+hgetall	
user	admin	strongpass	*	+#all

!26

Application Architecture

API
Web Service

Micro
Service

Data

ETL Load

Cluster of Servers

Redis Cluster

!27

Redis Cluster – Data Sharding

API for storing and
getting data

CPC server 1

Redis Server 1

CPC server 2

Redis Server 2

CPC server 3

Redis Server 3

!28

API for storing / getting
dataServer 1

Redis Server 1

Server 2

Redis Server 2

Server 3

Redis Server 3

Server 4

Redis Server 1
(Mirror)

Server 5

Redis Server 2
(Mirror)

Server 6

Redis Server 3
(Mirror)

Mirroring Servers for HA

!29

Data Load to Redis

Prepare data for insert
(on the fly while reading a file)

Load each Key->Value into Redis 3-
node cluster

Measure load performance
~3,000 records per second

!30

Redis - Data Distribution

API for storing and
getting data in each

shard

Server 1

Redis Server 1

Key1

Key4

CPC server 2

Redis Server 2

Key2

Key5

Redis Server 3

Key3

Key6

Keys are equally
shared among 3

servers in a cluster
without duplication

Server 2 Server 3

!31

RediSQL

RediSQL is the Fast, in-memory, SQL engine. 

• Fast access and fast queries
• RediSQL works mainly in memory, it can reach up to 130.000 transaction

per second.

https://redisql.com/

https://redisql.com/

!32

RediSQL features

• Complete JSON support
• RediSQL exploits the JSON1 module of SQLite to bring that capability to

easy and quickly manage JSON data inside SQL statements and tables.
• In RediSQL you are able to manipulate JSON in every standard way.
• Full text search support
• RediSQL fully supports also the FTS{3,4,5} engine from SQLite, giving you

a full text engine. You will be able to manage and search for data.

!33

RediSQL

!34

Redis Cluster

!35

Redis Cluster

• Redis Cluster is an active-
passive cluster implementation that consists of
master and slave nodes.

• The cluster uses hash partitioning to split the key
space into 16K key slots, with each master
responsible for a subset of those slots.

• Each node in a cluster requires two TCP ports.

!36

Redis Cluster

• All nodes are directly connected with a service
channel.

• TCP baseport+4000, example 6379 -> 10379.
• Node to Node protocol is binary, optimized for

bandwidth and speed.
• Clients talk to nodes as usually, using ascii protocol,

with minor additions.
• Nodes don't proxy queries.

!37

What nodes talk about?

PING: are you ok?
I'm master for XYZ hash slots.
Config is FF89X1JK

Gossip: this are info about other nodes I'm
in touch with:

A replies to ping, I think its state is OK.
B is idle, I guess it's having problems but I
need some ACK.

PONG: Sure I'm ok! I'm master for XYZ hash
slots. Config is FF89X1JK

Gossip: I want to share with you some info
about random nodes:

C and D are fine and replied in time.
But B is idle for me as well!
IMHO it's down!.

!38

Using Redis with Python

• In order to use Redis with Python you will need a Python Redis client

 pip	install	redis

import	redis	
r	=	redis.Redis	(

host='hostname’,	
port=port,	
password='password’)

r	=	redis.Redis(host='localhost',	port=6379,	db=0)	
r.set('foo',	'bar’)	
r.get('foo')

!39

Redis API - Python

!40

Redis API - PHP

!41

Pipelining

• Redis provides a feature called 'pipelining’ - send many commands to
redis all-at-once instead of one-at-a-time.

• With pipelining, redis can buffer several commands and execute them all
at once, responding with a single reply.

• This can allow you to achieve even greater throughput on bulk importing
or other actions that involve lots of commands.

https://redis.io/topics/pipelining

!42

Pipelines

>>> r = redis.Redis(...)
>>> r.set('bing', 'baz’)

Use the pipeline() method to create a pipeline instance
>>> pipe = r.pipeline()

The following SET commands are buffered
>>> pipe.set('foo', 'bar’)
>>> pipe.get('bing’)

the EXECUTE call sends all buffered commands to the server, returning
a list of responses, one for each command.
>>> pipe.execute()
[True, 'baz']

!43

Running out of memory?

• Redis will either be killed by the Linux kernel OOM killer, crash with an error,
or will start to slow down.

• With modern operating systems malloc() returning NULL is not common, usually
the server will start swapping (if some swap space is configured), and Redis
performance will start to degrade.

• Redis has built-in protections allowing the user to set a max limit to memory
usage. If this limit is reached Redis will start to reply with an error to write
commands (but will continue to accept read-only commands), or we can
configure it to evict keys when the max memory limit is reached.

!44

Redis Threading

• Redis is single threaded.
• Usually Redis is either memory or network bound.
• Using pipelining Redis running on Linux system can deliver even 1 million

requests per second, so if your application mainly
uses O(N) or O(log(N)) commands, it is hardly going to use too much CPU.

• To maximize CPU usage - start multiple instances of Redis in the same box and
treat them as different servers.

• With Redis 4.0+ it became more threaded. For now this is limited to deleting
objects in the background, and to blocking commands implemented via Redis
modules.

!45

Data Persistence

• Periodic Dump ("Background Save")
• fork() with Copy-on-Write, write entire DB to disk
• When?
- After every X seconds and Y changes, or,
- BGSAVE command

• Append Only File
• On every write, append change to log file
• Flexible fsync() schedule:
- Always, Every second, or, Never

• Must compact with BGREWRITEAOF

!46

Performance Testing  
Multiple keys read at once

!47

Benchmark - Hardware

!48

Lessons Learned

• 64-bit instances consume much more RAM

• Use MONITOR to see what is going on

• Master/Slave sync if far from perfect (via manual setup)

!49

Redis Use Cases

• Stock prices

• Analytics

• Real-time data collection

• Real-time communication

• And wherever you used memcached before

 Memcached

!51

Memcached

What is Memcached?
• High-performance, distributed memory object caching system. Used in speeding

up dynamic web applications by alleviating database load.
When can we us it?
• Anywhere if we have a spare RAM
• Mostly used in wiki, social networking and book marketing sites.
Why should we us it?
• If we have a high-traffic site that is dynamically generated with a high database

load that contains mostly read threads when Memcached can help lighten the
load on a database.

!52

Memcached

History of Memcached
• Brad Fitzpatrick from Danga Interactive developed Memcached to

enhance speed of livejournal.com, which was then doing 20M+ dynamic
page loads per day.

• Memcached reduced DB load to almost 0, yielding faster page load time
and better resource utilization.

• Facebook is the biggest user of memchaced after live journal. They
have > 100 dedicated Memcached servers.

!53

Memcached Installation

wget http://memcached.org/latest
tar -zxvf memcached-1.x.x.tar.gz
cd memcached-1.x.x
./configure && make && make test && sudo make install

!54

Memcached
• Limits

• Key size = (250 bytes)
• 32bit/64bit (maximum size of process)

• LRU
• Least recently accessed items are cycled out
• One LRU exists per “slab class”
• LRU “evictions” need not be common

• It has Threads

!55

What Memcached is NOT

A persistent data store

A database

Application-specific

A large object cache

Fault-tolerant or highly available

!56

Memcached - Use Cases

!57

Memcached - Integration with Database

• Suite of functions that work
with Memcached and MySQL

• Leverage power of SQL engine

• Combine tasks

• Open source

!58

Use of Memcached

• Homepage data (often, shared expensive)

• Great for summaries
• Overview
• Pages where it is not that big a problem if data is a little bit out of date (e.g. search

results)

• Good for quick and dirty optimizations

!59

When NOT to use Memcached

• When you have very large objects

• When have keys larger than 250 characters

• When running in un-secure environment

• When persistence is needed, or a database

 Redis and Memcached Comparison

!61

Memory Usage
Redis is in general better.

Memcached:
• Specify the cache size and as you insert items the daemon quickly grows to a little more than

this size.
• There is not a good a way to reclaim any of that space, short of restarting memcached. All your

keys could be expired, you could flush the database, and it would still use the full chunk of RAM
you configured it with.

Redis:
• Setting a max size is up to us. Redis will never use more than it has to and will give you back

memory it is no longer using.
• Example of storing 100K ~2KB strings (~200MB) of random sentences into both. Memcached

RAM usage grew to ~225MB. Redis RAM usage grew to ~228MB. After flushing both, redis
dropped to ~29MB and memcached stayed at ~225MB. They are similarly efficient in how they
store data, but only one is capable of reclaiming it.

!62

Redis VS Memcached

• Memcached is a simple volatile cache server.

• It is good at this, but that is all it does. You can access those values by
their key at extremely high speed, often saturating available network or
even memory bandwidth.

• When you restart memcached your data is gone. This is fine for a
cache. You shouldn't store anything important there.

• If you need high performance or high availability there are 3rd party
tools, products, and services available.

!63

Disk I/O and Read/Write

Disk I/O dumping:
➢ A clear win for Redis since it does this by default and has very

configurable persistence.
➢ Memcached has no mechanisms for dumping to disk without 3rd party

tools.

Read/write speed:
➢ Both are extremely fast. Benchmarks vary by workload, versions, and

many other factors but generally show redis to be as fast or almost as
fast as memcached.

!64

Redis VS Memcached

!65

Redis VS Memcached

• Redis can do the same jobs as memcached can, and better.
• Redis can act as a cache as well. It can store key/value pairs too. In Redis

Value can be up to 512MB.
• Memcached had default maximum object size is 1MB. In version 1.4.2 and

later, you can change the maximum size of an object using the	-I command
line option.

• In Redis you can turn off persistence and it will happily lose your data on restart
too. If you want your cache to survive restarts it lets you can do that as well
(default).

https://redis.io/topics/lru-cache

!66

Redis VS Memcached

• If one instance of redis/memcached isn't enough performance for your workload,
redis is the clear choice.

• Redis includes cluster support and comes with high availability tools (redis-sentinel)
right "in the box". Over the past few years redis has also emerged as the clear
leader in 3rd party tooling.

• Companies like Redis Labs, Amazon, and others offer many useful redis tools and
services. The ecosystem around redis is much larger. The number of large scale
deployments is now likely greater than for memcached.

https://redis.io/topics/cluster-tutorial
https://redis.io/topics/sentinel

!67

Persistence

• By default redis persists data to disk using a mechanism called
snapshotting. If you have enough RAM available it's able to write all data to
disk with almost no performance degradation. It's almost free!

• In snapshot mode there is a chance that a sudden crash could result in a
small amount of lost data. If you absolutely need to make sure no data is
ever lost, redis has AOF (Append Only File) mode. In this persistence
mode data can be synced to disk as it is written. This can reduce
maximum write throughput to however fast your disk can write, but
should still be quite fast.

• There are many configuration options to fine tune persistence if you need,
but the defaults are very sensible. These options make it easy to setup redis
as a safe, redundant place to store data. It is a real database.

!68

Transactions and Atomicity

• Commands in redis are atomic, meaning you can be sure that as soon as
you write a value to redis that value is visible to all clients connected to
redis.

• There is no wait for that value to propagate. Technically memcached is
atomic as well, but with redis adding all this functionality beyond
memcached it is worth noting and somewhat impressive that all these
additional data types and features are also atomic.

• While not quite the same as transactions in relational databases, redis
also has transactions that use "optimistic locking" (WATCH/MULTI/
EXEC).

https://redis.io/topics/transactions
https://redis.io/commands/watch
https://redis.io/commands/multi
https://redis.io/commands/exec

!69

Redis VS Memcached - Conclusion

• Memcached is limited to strings

• Redis is more powerful, more popular, and better supported than
memcached. It has more tools for leveraging this datatype by offering
commands for bitwise operations, bit-level manipulation, floating point
increment/decrement support, range queries, and multi-key operations.
Memcached doesn't support any of that.

• Memcached can only do a small fraction of the things Redis can do.

• Redis is better even where their features overlap.

• For anything new, use Redis.

 Redis on AWS

!71

Redis on AWS – Replication and Persistence

• Now supports Redis 5.0.3 - latest GA version of open-source Redis.
• Redis has a primary-replica architecture and supports asynchronous

replication where data can be replicated to multiple replica servers.
• This provides improved read performance (as requests can be split

among the servers) and faster recovery when the primary server
experiences an outage.

• For persistence, Redis supports point-in-time backups (copying the Redis
data set to disk). 

!72

Redis on AWS – Replication and Persistence

• HA and scalable
• Redis offers a primary-replica architecture or a clustered topology.

This allows you to build highly available solutions providing consistent
performance and reliability.

• When we need to adjust a cluster size, various options to scale up and
scale in or out are also available. This allows for a cluster to grow with
demands. 

!73

Redis on AWS - ElastiCache

• AWS ElastiCache is a fully managed service for Redis.
• No need to perform management tasks such as hardware provisioning,

software patching, setup, configuration, monitoring, failure recovery, and
backups.

• Continuously monitors clusters to keep Redis up and running
• It provides detailed monitoring metrics associated with nodes, to diagnose

and react to issues quickly.
• ElastiCache adds automatic write throttling, intelligent swap memory

management, and failover enhancements to improve upon the availability
and manageability of open source Redis.

!74

Redis on AWS – Creating a New Cluster

!75

Redis on AWS – Creating a Cluster

!76

Redis on AWS – Adding a Node

!77

Redis on AWS - Read Replicas

• When to consider using a Redis read replica?
➢ Scaling beyond the compute or I/O capacity of a single primary node for read-heavy

workloads.
➢ Data protection scenarios; in the unlikely event or primary node failure or that the

Availability Zone in which your primary node resides becomes unavailable, you can
promote a read replica in a different Availability Zone to become the new primary.

• In the event of a failover, any associated and available read replicas should automatically
resume replication once failover has completed (acquiring updates from the newly
promoted read replica).

• For read replicas, you should be aware of the potential for lag between a read replica and
its primary cache node, or “inconsistency”.

!78

Redis on AWS – ElastiCache Failover

• What happens during failover and how long does it take?
➢ElastiCache flips the DNS record for a cache node to point at the read replica, which is in turn

promoted to become the new primary.
➢Start-to-finish, failover typically completes within sixty seconds.

• Read replica may only be provisioned in the same Region as primary
cache node.

!79

Redis on AWS - Backup and Restore

• Backup and Restore is a feature that allows to create snapshots of
ElastiCache for Redis clusters.

• ElastiCache stores the snapshots, allowing users to use them to restore
Redis clusters.

• A snapshot is a copy of entire Redis cluster at a specific moment.

!80

Redis on AWS – Encryption

• Encryption in-transit feature enables to encrypt all communications
between clients and Redis server as well as between the Redis servers
(primary and read replica nodes).

• Encryption at-rest allows for encryption of data during backups and
restore - data backed up and restored on disk and via Amazon S3 is
encrypted. 

!81

Multi-Cloud and Hybrid Cloud-OnPrem Support

App

App

App

App

Active-Active	or	Active-Passive

On-premises

81

!82

Covers Transactional, Operational and Real-Time
Analytical Workloads

✓ Authorization

✓ Authentication

✓ Price Management

✓ Advertising Bids

✓ Messaging

✓ Location-based Processing

✓ User Session Management

✓ Counting

✓ Leaderboards

✓ Page Ranking

✓ Recommendation Engine

✓ Time-series Analysis

✓ Session Analysis

✓ Secondary Index

✓ Accelerated Reporting

✓ Real-time Attribution

✓ Search

✓ Order History

✓ Inventory Tracking

TRANSACTIONAL ANALYTICS OPERATIONAL

!83

Redis Enterprise Technology

Redis	Enterprise	Node Redis	Enterprise	Cluster

• Shared	nothing	cluster	architecture	
• Fully	compatible	with	open	source	
commands	&	data	structures

Enterprise
Layer

OSS Layer

!84

Redis Enterprise: Shared Nothing Symmetric Architecture

Unique	multi-tenant	container	-	like	architecture	enables	running	hundreds	of	databases	over	a	single,	average	cloud	
instance	without	performance	degradation	and	with	maximum	security	provisions.

!85

Redis Enterprise : Multi-Tenancy Maximizes Resource Utilization

200+ applications or shards on a single 4vcore cloud instance

• Shard isolation/protection

• Noisy-neighbor cancellation	

• Minimizing CPU
consumption of inactive
applications

Application	A

Application	B

Application	N

!86

True	Linear	Scalability	
Cluster	Throughput	(@	1	msec	Latency)	

20M	ops/sec 30M	ops/sec 50M	ops/sec
1.92M	–	per	node	

97.65K	–	per	shard

op
s/
se
c

#	of	nodes

3 6 12 18 24 26

50420000

41190000

30200000

21120000

11380000

5020000

!87

Redis Enterprise

Reduced Infrastructure We have references of up to 70%
reduction in Infrastructure CostsReduced

Infrastructure
Up to 70% reduced Infrastructure

Costs

Programmer
Productivity

Programmer only has to worry
about the connection to the ONE

end point

Operational
Maintenance

Automatic cluster and scale
management

!88

Durability At Memory Speeds

• Multiple data persistence options (AOF,
Snapshot)

• Every node in the cluster is connected to NAS
making the cluster immune to data loss

• Enabling data persistence only at the
slave-level for speed

• Delivering master and slave to be attached
to storage for reliability

!89

• Proven technology backed by deep
academic research

• Local latencies guaranteed with
consensus free protocol

• Built-in conflict resolution

• Strong eventual consistency

• Multiple enhancements to make
CRDTs fully Redis compatible (CRDB)

Active-Active Geo Distribution (CRDT-Based)

App

App

App

!90

