
© 2018 HAZELCAST | 1

Low Latency Applications

Open Source In Memory Computing Platform

© 2018 HAZELCAST | 2

Is Your Business Experiencing These Issues?

Slow websites Overloaded/crashing web
services

Slow customer-facing
applications

Large mainframe costs Adding hardware
with little effect

New IT architecture projects running
slow/missing SLAs

© 2019 HAZELCAST Confidential & Proprietary | 3

Card-Processing
Infrastructure

Time-
Based

SLA

Swipe

Response

The Hazelcast Difference
Example: Credit Card Processing

Majority of Time Consumed in Network Transit

Milliseconds
Initial Processing:
Microseconds

Fraud
Detection
Algorithm

Tiny Window of Time
For Accurate Processing

Time

of
Card

Terminals

Traditional

eCommerce

iPhones

Square

IoT Evolution

Time

of
Transactions � Performance at massive scale

� Increase in fraud attempts

Business Challenge

Performance At Scale
gives time for

Multiple Algorithms

Business Opportunity: TIME

© 2019 HAZELCAST Confidential & Proprietary | 4

Business Challenges Solved

Latency & Speed
Time is money

Scalability
Hazelcast scales effortlessly responding
to peaks, valleys for optimal utilization

Real-Time, Continuous
Intelligence
Real-time view of constantly changing
operational data

Zero Downtime
Built for high
resiliency

© 2019 HAZELCAST Confidential & Proprietary | 5

Data Grid Use Cases
Caching In-Memory

Data Grid
Web Session

Clustering

• High-Density Memory
Store, client and member

• Full JCache support

• Elastic scalability

• Super fast

• High availability

• Fault tolerant

• Cloud ready

• Simple, modern APIs

• Distributed data structures

• Distributed compute

• Distributed clustering

• Object-oriented and
non-relational

• Elastic and scalable

• Transparent database
integration

• Client-server and/or
embedded architecture

• Seamless failover between user sessions

• High performance

• No application alteration

• Easy scale-out

• Fast session access

• Offload to existing cluster

• Tomcat, Jetty + any Web Container

• Works efficiently with large session
objects using delta updates

Microservices
Infrastructure

• Isolation of Services with many, small
clusters for easier troubleshooting &
maintenance

• Service registry

• Multiple network discovery
mechanisms

• Inter-process messaging

• Fully embeddable

• Resilient and flexible

© 2018 Hazelcast Inc. Confidential & Proprietary

Hazelcast - High Performance Platform

Secure | Manage | Operate
Embeddable | Scalable | Low-Latency

Secure | Resilient | Distributed

Ingest & Transform
Events, Connectors, Filtering

Combine
Join, Enrich, Group, Aggregate

Stream
Windowing, Event-Time Processing

Compute & Act
Distributed & Parallel Computations

Live Streams
Kafka, JMS,

Sensors, Feeds

Databases
JDBC,

Relational, NoSQL,
Change Events

Files
HDFS, Flat Files,

Logs, File watcher

Applications
Sockets

Mobile

Apps

Commerce

Communities

Social

Analytics
Visualization

Data Lake

Integrate
APIs, Microservices, Notifications

Communicate
Serialization, Protocols

Store/Update
Caching, CRUD Persistence

Compute
Query, Process, Execute

IMDG In-Memory Data Grid

Jet In-Memory Streams

Scale
Clustering & Cloud, High Density

Replicate
WAN Replication, Partitioning

Management Center

Secure
Privacy, Authentication,

Authorization

Available
Rolling Upgrades, Hot Restart

Secure
Privacy, Authentication,

Authorization

Available
Job Elasticity, Graceful shutdown

© 2019 HAZELCAST Confidential & Proprietary | 7

Technical Use Cases: Cache in Front of a
Data Store

Business Systems

A B C

RDBMS Mainframe MongoDB
NoSQL REST

ScaleHazelcast IMDG

© 2019 HAZELCAST Confidential & Proprietary | 8

Technical Use Cases: In-Memory Data
Grid Compute

Hazelcast IMDG Servers
Hazelcast Server

JVM [Memory]

A B C

Business Logic

Data Data Data

CE = Compute Engine

Result

Business / Processing Logic

Result

TCP / IP

Client Client

© 2019 HAZELCAST Confidential & Proprietary | 9

Technical Use Cases: In-Memory Data
Grid Messaging

Hazelcast Distributed Topic Bus

Su
bs

cr
ib

es

D
el

iv
er

s

Topic Bus

Node 1 Node 2 Node 3 Node 4

Client 3Client 2Client 1

MSG

Su
bs

cr
ib

es

D
el

iv
er

s

MSG

Pu
bl

is
he

rs

MSG

© 2019 HAZELCAST Confidential & Proprietary | 10

Proof Points – Agile High-Speed Trading
• Low-latency data grid for fast access to market data,

positions, etc.
• Low latency, data-aware compute on elastic grid.
• Distributed low-latency calculation of prices, risks, etc.

Trading
Applications

IMDG

IMDG IMDG

IMDG

IMDG IMDG

Unified Data & Compute Grid

HSBC – FX Quotation Systems
• Sub-millisecond access, off heap data to eliminate garbage collection
• Fast distributed calculations of prices, margins and quotations
• Ensure zero-downtime SLA

National Australia Bank – Financial Market Data
• More predictable/accurate derived calculations with single source of market

data
• Stable and always-on gateway access – allowing more concurrent system

users, more quickly

© 2018 Hazelcast Inc. Confidential &
Proprietary

Proof Points – Zero-Downtime Business

IMDG

IMDG IMDG

IMDG

IMDG IMDG

IMDG

IMDG IMDG

IMDG

IMDG IMDG

Cross-cluster replication across geographies
Globally available transaction data with millisecond response
Low-latency data-aware compute on elastic grid
Elastic scalability to support peak loads during extreme spikes

Capital One
Store 2TB of customer data and synch geographically
20K+ tps distributed compute with under 1ms latency
99.999% uptime architecture

Visa
Meets SLA: 10,000 TPS with SSL
99.999% up-time and 2-3X faster than Redis

© 2018 Hazelcast Inc. Confidential &
Proprietary

Proof Points - Online Store - Retail/Tech
Cross-cluster replication across geographies
Globally available online store data with millisecond response
Elastic scalability to support peak loads during extreme spikes
De-couple online store from back-ends for maximum resilience

Online
Shopping

eCommerce
App Servers

IMDG

IMDG IMDG

IMDG

IMDG IMDG

Unified Digital Customer Data Layer

Apple
• Time to report accurate order delivery date from 30 mins to 7 secs
• 1.2ms max application latency
• Ensure zero-downtime SLA for new iPhone introductions

Target
• Removed performance bottleneck for Apache Cassandra system of

record – latency reduced from 300ms to ~2ms
• Exceeds SLA target of 40ms and scales elastically to meet seasonal

events like Black Friday, Cyber Monday

© 2018 Hazelcast Inc. Confidential &
Proprietary

Proof Points - Customer Visibility - Telco/Media

IMDG

IMDG IMDG

IMDG

IMDG IMDG

Cross-cluster replication across geographies
Globally available Customer data with millisecond response
Elastic scalability to support peak loads during extreme spikes
De-couple customer sites from back-ends for maximum resilience

Single View of
Customer

Customer
SupportSupport Bots

Unified Digital Customer Data Layer

Omni-Channel Customer Interaction

Comcast:
Captures viewing and account history, service
engagements, location data;
Used to create an integrated enriched view which
is the basis for an AI-driven engagement on
customer call-in

© 2018 Hazelcast Inc. Confidential &
Proprietary

Traditional View of Big Data and Data Science:
“We Have Mountains of Data”

and: “There’s GOLD in Them Thar Hills!”
You just have to dedicate Massive Computing Resources & Teams of Data
Scientists to identify nuggets of insight within a matter of Days or Hours.

SLOW DATA

© 2018 Hazelcast Inc. Confidential &
Proprietary

Imagine Pin-pointing
Perishable Insights

Instantly & taking Action?

Best
Route

Potential
Risk

FAST DATA

© 2018 Hazelcast Inc. Confidential &
Proprietary

Evolution of Stream Processing

1st Gen (2000s)
Hadoop(batch) or Apama(CEP)
hard choices

Distributed Batch Compute – MapReduce – scaled, parallelized, distributed, resilient, - not real-
time
or
Siloed, Real-time – Complex Event Processing – specialized languages, not resilient, not
distributed(single instance), hard to scale, fast, but brittle, proprietary

2nd Gen (2014)
Spark
hard to manage

Micro-batch distributed – heavy weight, complex to manage, not elastic, require large dedicated
environments with many moving parts,
not Cloud-friendly, not low-latency

3rd Gen (2017 Jet & Flink)
flexible & scalable
True “Fast Data”

Distributed, real-time streaming – highly parallel, true streams, advanced techniques (Directed
Acyclic Graph) enabling reliable distributed job execution
Flexible deployment - Cloud-native, elastic, embeddable, light-weight, supports serverless, fog &
edge.
Low-latency Streaming, ETL, and fast-batch processing, built on proven data grid

© 2018 Hazelcast Inc. Confidential &
Proprietary

Streaming Performance

*

* Spark had all performance options, including Tungsten, turned on

© 2018 Hazelcast Inc. Confidential &
Proprietary

IMDG Cluster

Stream Processing

IMDG

IMDG

IMDG

Data In Motion

Jet
Cluster

Internet of Things
Sensors,

Smart Things

Databases
JDBC,

Relational, NoSQL,
Change Events

Files
HDFS, Flat Files,

Logs, File watcher

Applications
Sockets

Live Streams
Kafka, JMS, Feeds

Situational
Geospatial

Weather

Analytics

Predictions

Decisions

Alerts

Contextual &
Operational

© 2018 Hazelcast Inc. Confidential &
Proprietary

In-Memory Distributed Stream Processing Use-Cases

Real-time Stream
processing ETL/Ingest

• Big Data in near real-
time

• Distributed, in-memory
computation

• Aggregating, joining
multiple sources,
filtering, transforming,
enriching

• Elastic scalability

• Super fast

• High availability

• Fault tolerant

• Supports common
sources such as HDFS,
File, Directory, Sockets

• Custom sources can be
easily created

• Batch and streaming

• Streaming ingest from
Oracle, SQL Server,
MySQL using Striim

• Sink to Hazelcast or
other operational data
stores

Data-Processing
Microservices

• Data-processing
microservices

• Isolation of services
with many, small
clusters

• Service registry

• Network discovery

• Inter-process
messaging

• Fully embeddable

• Spring Cloud, Boot
Data Services

Edge Processing

• Low-latency analytics
and decision making

• Saves bandwidth and
keeps data private by
processing it locally

• Lightweight – runs on
restricted hardware

• Both processing and
storage

• Fully embeddable for
simple packaging

• Zero dependencies for
simple deployment

Example - Stream Processing with Machine Learning
Move from Reactive to Pro-Active

Taking Action before negative impact or ahead of opportunity

Ingest Classify Predict Pro-ActEnrich

Context Meaning

IMDG – Low-Latency Data at Rest

Low-Latency Stream Processing - Data in Motion

Models

Stream Processing
Key Capabilities

2
2

Directed Acyclic Graphs

○ Directed Acyclic Graphs are used to model
computations

○ Each vertex is a step in the computation

○ It is a generalisation of the MapReduce paradigm

○ Supports both batch and stream processing

○ Other systems that use DAGs: Apache Tez, Flink, Spark,
Storm…

Example: Word Count

● Naïve, single threaded world:

1. Iterate through all the lines

2. Split the line into words

3. Update running total of counts with each word
final String text = "...";
final Pattern pattern = Pattern.compile("\\s+");
final Map<String, Long> counts = new HashMap<>();

for (String word : pattern.split(text)) {
counts.compute(word, (w, c) -> c == null ? 1L : c + 1);

}

© 2017 Hazelcast Inc. Confidential & Proprietary

Source Sink

Still single-threaded execution:
each Vertex is executed in turn sequentially,

wasting the CPU cores

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals
Once everything is finished,
emit all pairs of (word, count)

(text) (word) (word, count)

We can represent the computation as a DAG

© 2017 Hazelcast Inc. Confidential & Proprietary

Source
(text) (word)

Sink
(word, count)

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals.
Once everything is finished,
emit all pairs of (word, count)

By introducing concurrent queues between the vertices
we enable each vertex to run concurrently

© 2017 Hazelcast Inc. Confidential & Proprietary

(word)

(word)

(word, count)

(word, count)

(lin
e)

(line)

Source Sink

Tokenize

We only need to ensure the same words
go to the same Accumulator.

The Accumulator vertex can also be executed
in parallel by partitioning the accumulation

step by the individual words.

Tokenize

Accumulate

Accumulate

© 2017 Hazelcast Inc. Confidential & Proprietary

Node

Node

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

This is what Jet does.

Key to Stream Processing – windows
Sliding, Tumbling and Session Windows

Unordered and Late Data Handling

Job Elasticity
• Jobs are elastic – they can dynamically scale to make use of all available

members, following cluster topology changes
• Job state and lifecycle are saved to IMDG IMaps and benefit from their

performance, resilience, scale and persistence
• Automatic re-execution of part of the job in the event of a failed worker
• Tolerant of loss of nodes; missing work will be recovered from last

snapshot and re-executed
• Cluster can be scaled without interrupting jobs – jobs benefit from the

increased capacity
• State and snapshots can be persisted to resume after cluster restart

(Version 3.0)

© 2019 HAZELCAST Confidential & Proprietary | 33

Stream Processing Use-Case – Payments Processing

Payment
Values

Customer Actions

What If? Personalized
Payment
Instructions

Payment “What Ifs?”
• What are their balances? - Risk > Payment > Identify fraud > Block payment
• What is their history? - Opportunity > Real-time Offers > Upsell

Locations

Account
Balance
Payment
History

Customer History

© 2019 HAZELCAST Confidential & Proprietary | 35

Payment Processing Case Study
Challenge
• Before settling a transaction, payment processing systems check the merchant details by forwarding

them to the card’s issuing bank or association for verification, and carry out anti-fraud measures

• Each step in this pipeline requires the lowest possible latency to deliver a positive customer
experience

• With 24/7 global operations and hard SLAs, resiliency and automatic recovery are a must-have

Solution
• Within the payment processing application, Jet acts as the pipeline for each payment process step
• The payment management application orchestrates XML payment instructions and forwards them to

the respective card’s issuing bank or association for verification, then carries out anti-fraud measures
before settling transactions

• Multiple Jet processing jobs are pipeline components. Hazelcast IMDG distributed IMaps are used for
transaction ingestion and messaging

Why Hazelcast Jet
• High-performance connectors between Jet and IMDG enable low-latency operations; consistent

low latency of the Hazelcast platform keeps the CGI payment management application within
strictest SLA requirements

• Automatic recovery of the Jet cluster achieves high-availability even during failures
• Open source, standards-based avoids vendor lock-in

Customer Success
• A global information

technology solutions
company

• Processing 10’s of 1,000’s of
payments per second
today

• Built-in scalability to
support future business

© 2018 HAZELCAST |
36

Use-Case - Infrastructure Monitoring

Pumping
Sensor

Customer Actions

What If?
Predictive
Maintenence
& Operations

Infrastrucure “What Ifs?”
• What components will fail or require maintenance?
• Should I increase/decrease rate of drilling?
• Can I optimize production?

Drilling
sensors
Weather
Environment
Sensor
Business
Context

© 2018 Hazelcast Inc. Confidential & Proprietary

Use-Case Instance - Oil Infrastructure

Lightweight
Jet Edge Clusters

Single View of
Operations

Data Center Stream Processing
• Ingest & Consolidation
• Enterprise-Wide Activity Tracking & Scheduling

Operational Site - Edge Processing - Jet uniquely able to run in Edge
• Real-time Low-latency Edge Decisions
• Data Ingest, Filtering, & Aggregation to Feed Data Center (save bandwidth

Jet / IMDG
Cluster

Analytics & BI
Jet adjusts

rig settings

in real time
Events

Decisions

- Sensors
- Active
Components

© 2019 HAZELCAST Confidential & Proprietary | 39

Edge Processing: Oil & Gas Field
Equipment Monitoring

Gathering 50,000+
events per second
throughout the process

Why Hazelcast Jet
• Embeddability into constrained environments

• No dependencies

• Performance and scalability
• In-memory data store with parallel processing enables scalable, real-time analytics

• Open source, standards-based avoids vendor lock-in

Challenge
Leading oil & gas system integrator, specializing in acquisition, persistence, secure
transportation and dissemination of high-frequency sensor data needed low-latency
early issue detection and automated remediation to avoid production loss and optimize
well productivity

On Site

Edge Computing Cluster
In Truck

Hazelcast Jet

Ingestion Operational
Storage

Pre
Processing Cleaning

Live
Insights

Decision
Making

Sensors

Oil Well

Active Parts

Events

Decisions

Data Center

Active Parts

Hazelcast Jet

Long-term
Storage

DWH

Aggregated Data

Low-bandwidth
Network

Solution
• Hazelcast Jet, as processing backbone of application monitoring well sensors with

varying formats and frequency, computes data insights to decisions
• Jet adjusts rig settings in real time
• Embedded Hazelcast IMDG as operational data store for easy scaling (bare metal or

AWS)

© 2018 HAZELCAST | 40

Thank You

© 2019 HAZELCAST Confidential & Proprietary | 41

Select Customers by Industry

Banking & Financial Services

High-Tech

LogisticsInsurance

Consumer & Ecommerce

Gaming &
Entertainment• 50 of the

world’s largest
financial services
companies

• 6 of the
world’s largest
e-commerce
companies

• 7 of the
world’s largest
communications
companies

Telecommunications

© 2019 HAZELCAST Confidential & Proprietary | 42

Use-Case – Payments Processing

Payment
Values

Customer Actions

What If? Personalized
Payment
Instructions

Payment “What Ifs?”
• What are their balances? - Risk > Payment > Identify fraud > Block payment
• What is their history? - Opportunity > Real-time Offers > Upsell

Locations

Account
Balance
Payment
History

Customer History

© 2019 HAZELCAST Confidential & Proprietary | 43

ETL Case Study
Challenge
• Valuable information such as accounts, portfolios, positions, policies, assets and holdings has to be loaded from multiple sources and

systems in order to be analyzed and broken down
• This involves loading, normalizing, reclassifying, combining and aggregating in large scale

• With hard SLAs, high throughput, resiliency and automatic recovery are a must-have

Solution
• Within the analytical application, Jet acts as the ETL pipeline for loading and pre-processing the data
• Data has to be available for analysis as soon as possible. Jet distributes the ETL job across the

cluster to reduce the processing time. This allows operations under hard SLAs

• ETL jobs may fail as a result of hardware fault. Restarting the processing would lead to breaking the
SLA. Jet brings resilience – the ETL job can resume from where it left off

• Reading from various systems of record is made possible by wide range of connectors in Jet library

Why Hazelcast Jet
• Embeddable architecture of Jet allows OEMing Jet into Finantix products making deployment into

conservative and restrictive banking environments possible

• Automatic recovery of the Jet cluster achieves high-availability even during failures

• Open source, standards-based avoids vendor lock-in

Customer Success
• A global fintech company

founded in 1994
• Helps leading financial

institutions digitize and
transform key processes in
the financial services
industry

• Built-in scalability to
support future business

© 2019 HAZELCAST Confidential & Proprietary | 44

Use-Case - Personalization - Online Retail

Shopping
Cart adds

Customer Actions

What If? Personalized
Experience
& Insights

Shopping Cart “What Ifs?”
• Have they paused shopping? - Risk > Cart Abandonment > Offer free shipping > Convert
• Are there offers correlated to their interactions - Opportunity > Real-time Offers > Upsell

Product
Views
Searches

Ad views

Website
Clicks

Customer Interests

Consumer

© 2018 Hazelcast Inc. Confidential & Proprietary

Why Latency Matters - Real-time Offers

Jet Cluster

Consumer
Shopping

Flow
“Directed

Acyclic Graph”

Product
Search

IMDG

IMDG

IMDG

Write
Through to
DB

Product
Views

Adding to
Cart

PAUSE to
Compare

Check Out

Dynamic
Offer

Cart at Risk

eCommerce
App Servers

- Insights
- Decisions
- Predictions
- Alerts

© 2019 HAZELCAST Confidential & Proprietary | 46

Stream Processing with Machine
Learning

Moving Actions from Reactive to Pro-Active
Taking Action before negative impact

Ingest Classif
y

Predi
ct

Pro-ActEnric
h

Conte
xt

Meani
ng

IMDG - Data at Rest

Stream Processing - Data in Motion

Training

© 2019 HAZELCAST Confidential & Proprietary | 47

Stream Processing
Key Capabilities

4
7

© 2019 HAZELCAST Confidential & Proprietary | 48

Directed Acyclic Graphs
○ Directed Acyclic Graphs are used to model

computations

○ Each vertex is a step in the computation

○ It is a generalisation of the MapReduce paradigm

○ Supports both batch and stream processing

○ Other systems that use DAGs: Apache Tez, Flink, Spark,
Storm…

© 2019 HAZELCAST Confidential & Proprietary | 49

Example: Word Count
● Naïve, single threaded world:

1. Iterate through all the lines

2. Split the line into words

3. Update running total of counts with each word

final String text = "...";
final Pattern pattern = Pattern.compile("\\s+");
final Map<String, Long> counts = new HashMap<>();

for (String word : pattern.split(text)) {
counts.compute(word, (w, c) -> c == null ? 1L : c + 1);

}

© 2017 Hazelcast Inc. Confidential & Proprietary

Source Sink

Still single-threaded execution:
each Vertex is executed in turn sequentially,

wasting the CPU cores

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals
Once everything is finished,
emit all pairs of (word, count)

(text) (word) (word, count)

We can represent the computation as a DAG

© 2017 Hazelcast Inc. Confidential & Proprietary

Source
(text) (word)

Sink
(word, count)

Tokenize Accumulate

Split the text into words
For each word emit (word)

Collect running totals.
Once everything is finished,
emit all pairs of (word, count)

By introducing concurrent queues between the vertices
we enable each vertex to run concurrently

© 2017 Hazelcast Inc. Confidential & Proprietary

(word)

(word)

(word, count)

(word, count)

(lin
e)

(line)

Source Sink

Tokenize

We only need to ensure the same words
go to the same Accumulator.

The Accumulator vertex can also be executed
in parallel by partitioning the accumulation

step by the individual words.

Tokenize

Accumulate

Accumulate

© 2017 Hazelcast Inc. Confidential & Proprietary

Node

Node

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

Source Sink

Tokenize

Tokenize

Accumulate

Accumulate

Combine

Combine

This is what Jet does.

© 2019 HAZELCAST Confidential & Proprietary | 55

Data Inputs(Sources) and
Outputs(Sinks)• Hazelcast Icache (JCache), (batch and streaming

of changes)
• Hazelcast IMap (batch and streaming of changes)
• Hazelcast IList (batch)
• HDFS (batch)
• Kafka (streaming)
• Socket (text encoding) (streaming)
• File (batch)
• FileWatcher (streaming – as new files appear)
• JDBC (batch)
• NoSQL (Cassandra, MongoDB)
• Time Series (InfluxDB)
• JMS (streaming)
• Custom using simple builders (batch and

streaming)

© 2019 HAZELCAST Confidential & Proprietary | 56

Key to Stream Processing – windows
Sliding, Tumbling and Session Windows

© 2019 HAZELCAST Confidential & Proprietary | 57

Unordered and Late Data Handling

© 2019 HAZELCAST Confidential & Proprietary | 58

Job Elasticity
• Jobs are elastic – they can dynamically scale to make use of all available

members, following cluster topology changes
• Job state and lifecycle are saved to IMDG IMaps and benefit from their

performance, resilience, scale and persistence
• Automatic re-execution of part of the job in the event of a failed worker
• Tolerant of loss of nodes; missing work will be recovered from last

snapshot and re-executed
• Cluster can be scaled without interrupting jobs – jobs benefit from the

increased capacity
• State and snapshots can be persisted to resume after cluster restart

(Version 3.0)

© 2019 HAZELCAST Confidential & Proprietary | 59

Jet Management Center: Dashboard

Running Jobs

Cluster Summary

Failed Jobs

EE PS

© 2019 HAZELCAST Confidential & Proprietary | 60

Jet Management Center: Job Detail
Record Flow Snapshot Details

Job Lifecycle

DAG Visualization

DAG Vertex Details

Job Details

EE PS

© 2019 HAZELCAST Confidential & Proprietary | 61

Security Suite Features

Business Applications
(IMDG and Jet Clients)

Authenticate / Authorize Roles

Hazelcast Jet Cluster

Process Security

Data Security

Record-level Security

Communication Security TLS 1.2

Corporate
Information

Security
(LDAP/AD)

Au
di

ta
bl

e

TL
S

M
ut

ua
l A

ut
he

nt
ic

at
io

n

EE

© 2019 HAZELCAST Confidential & Proprietary | 63

Fault Tolerance: Distributed State Snapshots
Exactly-Once, At-Least Once or No Guarantee to
optimize between performance and correctness

Distributed State Snapshots to back-up running
computations

Resilience with backups distributed and replicated across
the cluster to prevent losing data when member fails

Simplicity as the snapshots are stored in embedded in-
memory structures. No further infrastructure is necessary

© 2019 HAZELCAST Confidential & Proprietary | 65

Lossless Recovery: Automatic Job Resumption

• When cluster is restarted, Jet discovers it was
shut down with running jobs

• Jet restarts the jobs
• Checkpoints are recovered
• For streaming, rewindable sources are

rewound using saved offsets (Kafka, Hazelcast
IMap, Hazelcast ICache events). If the source
cannot be fully rewound, the job is terminated
with error, or continued, depending on
configuration

• Batch sources are resumed from last pointer,
otherwise from the beginning

Hot Restart
Store

Hot Restart
Store

Hot Restart
Store

Only Hot Restart Stores remain:

Source Stream:

0 1 2 3

rewinding

Checkpoints

After Restart, resume from checkpoint 3:

3 4 5 6

EE

© 2019 HAZELCAST Confidential & Proprietary | 66

Rolling Job Upgrades

• Allow jobs to be upgraded without data loss or interruption

• Rolling upgrades make use of Jet state snapshots

• Via Job API and Man Center

Processing Steps
1. Jet stops the current Job execution
2. It then takes the state snapshot of the current Job and saves it
3. The new classes/jars are distributed to the Jet nodes
4. The job then restarts
5. Data is read from the saved snapshots
6. All of this in a few milliseconds

EE

© 2019 HAZELCAST Confidential & Proprietary | 67

Jet Application Deployment Options

• No separate process to manage
• Great for microservices / constrained

/Edge
• Great for OEM
• Simplest for Ops – nothing extra

• Separate Jet Cluster
• Scale Jet independent of applications
• Isolate Jet from application server lifecycle
• Managed by Ops

IMDG IMDG

Embedded

Application

Java API

Application

Java API

Application

Java API

Java Client

Application

Client-Server

Java Client

Application

Java Client

Application

Java Client

Application

Jet

© 2019 HAZELCAST Confidential & Proprietary | 69

Hazelcast IMDG Cloud Discovery & Deployment

Apache jClouds

PaaS Environment Integrations

Cloud & Cloud Discovery Plugins

Deployment Options

YARN

HD EE HD EE

HD EE PS

© 2019 HAZELCAST Confidential & Proprietary | 70

Hazelcast Jet & IMDG Enterprise for
Red Hat OpenShift Container Platform
Simplifies deployment of Jet Enterprise standalone
infrastructure, as a certified Red Hat Enterprise Linux
based image. Package consists of:
• Hazelcast Jet Enterprise and related dependencies
• Red Hat Enterprise Linux (RHEL) 7.3
• Oracle Java 8
• Health and liveness scripts
• Start and stop scripts

Jet Enterprise for OpenShift Features:
• Hazelcast can be run inside OpenShift, benefiting from its cluster

management software, Kubernetes, for discovery of members
• Ability to dynamically pass your Hazelcast configuration in JSON

format while creating services

Download at:
https://hazelcast.org/plugins/#hazelcast-openshift-
integration

EE

© 2019 HAZELCAST Confidential & Proprietary | 71

Why Hazelcast Jet?

High performance | Industry Leading Performance

Works great with Hazelcast IMDG | Source, Sink, Enrichment

Very simple to program | Leverages existing standards

Very simple to deploy | Embed 12MB jar or Client Server

Works in every Cloud | Same as Hazelcast IMDG

