5 hazelcast

Low Latency Applications % oo

Open Source In Memory Computing Platform _

> Is Your Business Experiencing These Issues?

Slow websites

Large mainframe costs

© 2018 HAZELCAST | 2

Overloaded/crashing web
services

Adding hardware
with little effect

O

Slow customer-facing
applications

New IT architecture projects running
slow/missing SLAs

I3 hazelcast

The Hazelcast Difference

Example: Credit Card Processing

loT Evolution Business Challenge

=

A A
iPhones
of # of . """"""'.
Card Square Transactions A ' 0 Performance at massive scale !
Terminals i 0 Increase in fraud attempts i
eCommerce / .
Traditional
Time g Time
Tiny Window of Time

For Accurate Processing

&

Time-

Based
SLA

Swipe

Response

==y

|
1

-
—h

Card-Processing
Infrastructure

.————————i --------------- ! .--7 ————— Milliseconds ——————>»"~~__
| Initial P ing: ! -
ol PR e
T l v v v Y v v
Fraud i 1 Performance At Scale
| Detection | ! gives time for ! '.
i Algorithm ! Multiple Algorithms ® hazelcaSt

© 2019 HAZELCA etary | 3

> Business Challenges Solved

Latency & Speed
Time is money

Scalability
Hazelcast scales effortlessly responding
to peaks, valleys for optimal utilization

Real-Time, Continuous

Intelligence
Real-time view of constantly changing
operational data

Zero Downtime
Built for high

resiliency -
a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 4

> Data Grid Use Cases

Caching In-Memory Microservices Web Session
Data Grid Infrastructure Clustering

P
@
NCSCS

* High-Density Memory Simple, modern APIs Isolation of Services with many, small

Store, client and member o clusters for easier troubleshooting &
Distributed data structures maintenance

Full JCache support

Distributed compute - Service registry

Elastic scalability

Distributed clustering Multiple network discovery Easy scale-out

Super fast '
" « Object-oriented and mechanisms

High availability non-relational

« Inter-process messaging

+ Fault tolerant » Elastic and scalable » Fully embeddable
* Cloud ready * Transparent database » Resilient and flexible
integration

High performance

Fast session access

ol

N[§ Q °o-
W a “ i

@

Seamless failover between user sessions

No application alteration

Offload to existing cluster

» Tomcat, Jetty + any Web Container

» Works efficiently with large session

objects using delta updates

» Client-server and/or
embedded architecture

I3 hazelcast

© 2019 HAZELCA . ' etary | 5

e 1
ss.. Hazelcast - High Performance Platform
(X X X J
o000
ssee |IMDG In-Memory Data Grid
o000
Integrate Communicate
APIs, Microservices, Naotifications Serialization, Protocols
Analytics
Mobile Store/Update Compute \ V'%J:tgzﬁgig
Caching, CRUD Persistence Query, Process, Execute
Scale Replicate Live Streams
Apps Clustering & Cloud, High Density WAN Replication, Partitioning Kafka, JMS,
——— Sensors, Feeds
rivacy, Authentication, Rolling Upgrades, Hot Restart a aJSS%S

. Authorization
Social

Relational, NoSQL,
Jet In-Memory Streams Change Events

Combine Files

Join, Enrich, Group, Aggregate — HDFS,. Flat Files,
Logs, File watcher

Ingest & Transform
Events, Connectors, Filtering

Commerce

Stream
Windowing, Event-Time Processing

Compute & Act

Distributed & Parallel Computations

Applications
Sockets

Communities Secure

Privacy, Authentication,
Authorization

Available
Job Elasticity, Graceful shutdown

Management Center
Secure | Manage | Operate
Embeddable | Scalable | Low-Latency
Secure | Resilient | Distributed

© 2018 Hazelcast Inc. Confidential & Proprietary

> Technical Use Cases: Cache in Front of a
Data Store

Business Systems

A B C

| | |
- TR

l l l l
RDBMS ~ Mainframe V080" REST

I3 hazelcast

> Technical Use Cases: In-Memory Data
Grid Compute

Hazelcast IMDG Servers

Hazelcast Server
JVM [Memory] CE = Compute Engine

IIliHHHII IIIHHHHII IIliHHHII
A B C

Business Logic
A

Business / Processing Logic

Result

> Result l
12 hazelcast
© 2019 HAZELCA ’ etary | 8

> Technical Use Cases: In-Memory Data
Grid Messaging

MSG

<

wn

)
Delivers

<

wn

)
Delivers

Hazelcast Distributed Topic Bus

I3 hazelcast

etary | 9

22 Proof Points - Agile High-Speed Trading
« Low-latency data grid for fast access to market data, MIZWO Ceene Bane CREDITSUISSER
positions, etc.
* Low latency, data-aware compute on elastic grid. G | Dow JONES gy toncon JPMORGAN CHASE & Co.

« Distributed low-latency calculation of prices, risks, etc.

HSBC <> * National Australia Bank

Trading .
Applications B B HSBC - FX Quotation Systems

« Sub-millisecond access, off heap data to eliminate garbage collection
« Fast distributed calculations of prices, margins and quotations

 Ensure zero-downtime SLA
Unified Data & Compute Grid

National Australia Bank — Financial Market Data

« More predictable/accurate derived calculations with single source of market
data

« Stable and always-on gateway access — allowing more concurrent system
users, more quickly

© 2019 HAZELCAST Confidential & Proprietary | 10

22 Proof Points — Zero-Downtime Business

Cross-cluster replication across geographies - HSBC X»

Globally available transaction data with millisecond response Capital(One

Low-latency data-aware compute on elastic grid PayPal
Deutsche Bank

Elastic scalability to support peak loads during extreme spikes

fl m \I I’ m '_I
+—>
S - - e - s Store 2TB of customer data and synch geographically

P N 20K+ tps distributed compute with under 1ms latency
! k ! ' 99.999% uptime architecture

!_’ MD '_I !.: MD ‘\.I
Visa
we B s B Meets SLA: 10,000 TPS with SSL

99.999% up-time and 2-3X faster than Redis

VISA

© 2018 Hazelcast Inc. Confidential &

22 Proof Points - Online Store - Retail/Tech

Walmart
Cross-cluster replication across geographies JCPenney .
. ,) o KOHLS
Globally available online store data with millisecond response /s .
Elastic scalability to support peak loads during extreme spikes ‘ < pepsico @
De-couple online store from back-ends for maximum resilience el
.A‘%%ﬂ
m Online
* * Shopping
D Apple
= « Time to report accurate order delivery date from 30 mins to 7 secs
- * 1.2ms max lication laten
cCommerce - . s max application latency
App Servers . - « Ensure zero-downtime SLA for new iPhone introductions

\ Target

« Removed performance bottleneck for Apache Cassandra system of

record - latency reduced from 300ms to ~2ms
m m « Exceeds SLA target of 40ms and scales elastically to meet seasonal

events like Black Friday, Cyber Monday

. MD \ ! MD \

1 1 > 1 1
m m

m___ m MD MD

Unified Digital Customer Data Layer

© 2018 Hazelcast Inc. Confidential &

2 Proof Points - Customer Visibility - Telco/Media

C lust licati hi \"L

ross-cluster replication across geographies

Globally available Customer data with millisecond response COMCAST \.:""-f/ =
Elastic scalability to support peak loads during extreme spikes Charter Spectrum gf&t

De-couple customer sites from back-ends for maximum resilience ‘
N CenturyLink-

'3& Qe Dsney

Parks and Resorts

Omni-Channel Customer Interaction niclscn

o

\ Comcast:

Captures viewing and account history, service

é ") engagements, location data;
tﬂ; a5 @ Used to create an integrated enriched view which
o Customer Single View of is the basis for an Al-driven engagement on
Support Bots Support Customer customer call-in

,‘ .\ ,' .\
’ N ’ \
1

. MD \ ! MD \

1 1 > 1 1
m m

m___ m MD MD

Unified Digital Customer Data Layer

© 2018 Hazelcast Inc. Confidential &

View of Big Data and Data Science:
“We Have Mountains of Data”

and: “There’s GOLD in Them Thar Hills!”

You just have to dedicate Massive Comput ,g g Resources & Teams of Data

Sc:entlsts to identify nugget foy :‘ é w0 iy % B of Days or HoL
-%. l»#) ‘:E =2 =t u L s ,‘ -

B N ’“
- ’ .
{ TR B s - s
*ﬁ 14] s - > , 2 -
gy & r
)'-, - S - :'f
- el
o TN
: 0= s

-_v"x—p"‘—i 2 -4 ""*"‘—“‘"

I © 2018 Hazelcast Inc. Confidential & I

Rockmart

5
(i3 &

101)

78}
78)
(&) — Villa Rica
BisEn 224 D
(@) 20
(13)
(61)

© 2018 Hazelcast Inc. Confidential &

Jallas

(e1)

| | | |
- 37
293 0O
Cartersville
A2 {400 1 0s)
Allatoona
Lake
=8 u Milto u 33}
w {23)
Buford
37 i)
L - Sugar Hill
WIS Lo 2
2) ~ (92) L)
L% 155
Acworth)
L\ = 324)
5 s Joh (124) =
(32) Kennesaw Roswell 1 o
Gan) [&5]
Duluth —. (124)
(20) =
@7 o Dacula
(€1) Easl Cobb i 31e)
92)
32 Peachtree (120)
1480% Corners = 3
= 3117 Lawrenceville
Q20 dunwoody la02) 3} '
Norcross = =
o
1 h 2 min == @
(120) h?)
(360) N
(02 (24
(360 S Griveor
e - N Chamblee G Vit Grayson
= Smyrna - { :
Hiram @27z ‘;'37 3 (24) (35)
120 Powder (400) Brookhaven . - {ié;
Soinge : Best ey Tocke? Snellvilie p
2. - (23) Mountain Park Ly Qzs
(23¢ @) S D} Loganville
Clarkdale
= 42 min {783 78 o
Mal — (264
Austel! dlons Clarkston Stone =
G Mountain (e)
i P - o Stone Modntain Park
@{ WERL P North Decatur 2
(70 319 {205
g Skyhouse South 124)
(6) t ' =<
@) D .10
+! Belvedere Park
Douglasville G2 Sw Atlanta » 20
=~ =2/ Creek State Park S o C Redan =
8) e 3 &3 Candler-McAfee
(s2) : joes @ 3 3
L 70 & (42) Lithonia
e) Qe6) ‘ Panthersville, @
166) (166) L70%
(166) - .
Ce (255} (55 = +
>/ East Point = (D
(s o
<0 . Conyers —
&) College Rark DL
S\ “ollege Bé c . A
Gox “{lunmv.m-m JacKson - = o
< Conley § 20

Atlanta Intermational

1st Gen (2000s)

Hadoop(batch) or Apama(CEP)
hard choices

2nd Gen (2014P

Spark
hard to manage

@

3rd Gen (2017 Jet & Flink)
flexible & scalable
True “Fast Data”

>** Evolution of Stream Processing

Distributed Batch Compute — MapReduce — scaled, parallelized, distributed, resilient, - not real-
time

or

Siloed, Real-time — Complex Event Processing — specialized languages, not resilient, not
distributed(single instance), hard to scale, fast, but brittle, proprietary

Micro-batch distributed — heavy weight, complex to manage, not elastic, require large dedicated
environments with many moving parts,

not Cloud-friendly, not low-latency

Distributed, real-time streaming — highly parallel, true streams, advanced techniques (Directed
Acyclic Graph) enabling reliable distributed job execution

Flexible deployment - Cloud-native, elastic, embeddable, light-weight, supports serverless, fog &
edge.

Low-latency Streaming, ETL, and fast-batch processing, built on proven data grid

© 2018 Hazelcast Inc. Confidential &

ssss Streaming Performance

Streaming Word Count - Average Latency (lower is better)

B Jet

1500
B Flink
Spark

1000
«
E
>
2
c
o)
©
=
500

04-.. J J , I
5,000,000

10,000 100,000 1,000,000

Messages / sec

* Spark had all performance options, including Tungsten, turned on
© 2018 Hazelcast Inc. Confidential &

ssse Stream Processing

| .
Situational _\.:@ Data In Motion
Geospatial
Weather ‘

Live Streams
Kafka, JMS, Feeds

Databases
JDBC,
Relational, NoSQL,

~__
—
—
Change Events y

s
I_fﬂ7 y Analytics

@ Predictions

Files N Jet Decisions
HDFS, Flat Files, Cluster
Logs, File watcher

Contextual &
I Operational
Applications
Sockets Alerts
L J \

Internet of Things q
Sensors,
Smart Things H

IMDG Cluster

© 2018 Hazelcast Inc. Confidential &

eses In-Memory Distributed Stream Processing Use-Cases

Real-time Stream

processing

LIIIJ

 Big Data in near real-
time

* Distributed, in-memory

computation

» Aggregating, joining
multiple sources,
filtering, transforming,
enriching

* Elastic scalability

Super fast
» High availability

» Fault tolerant

© 2018 Hazelcast Inc. Confidential &

ETL/Ingest

» Supports common
sources such as HDFS,
File, Directory, Sockets

» Custom sources can be
easily created

» Batch and streaming

» Streaming ingest from
Oracle, SQL Server,
MySQL using Striim

» Sink to Hazelcast or

other operational data
stores

Data-Processing
Microservices

Mo

» Data-processing
microservices

* |solation of services

with many, small
clusters

» Service registry
* Network discovery

* Inter-process
messaging

* Fully embeddable

» Spring Cloud, Boot
Data Services

Edge Processing
@?s
o-(1)-®
[4 é »

* Low-latency analytics
and decision making

* Saves bandwidth and
keeps data private by
processing it locally

* Lightweight — runs on
restricted hardware

* Both processing and
storage

* Fully embeddable for
simple packaging

» Zero dependencies for
simple deployment

Example - Stream Processing with Machine Learning

Move from Reactive to Pro-Active
Taking Action before negative impact or ahead of opportunity

Low-Latency Stream Processing - Data in Motion

N

—

NS N
Jcome Meewa Models

IMDG — Low-Latency Data at Rest

> Stream Processing
Key Capabilities

I3 hazelcast

Directed Acyclic Graphs

o Directed Acyclic Graphs are used to model

computations e
Y e
ORONG

o Each vertex is a step in the computation
o Itis a generalisation of the MapReduce paradigm
o Supports both batch and stream processing

o Other systems that use DAGs: Apache Tez, Flink, Spark,
Storm...

Example: Word Count

1. lterate through all the lines

2. Split the line into words

3. Update running total of counts with each word

final String text = "...";

final Pattern pattern = Pattern.compile("\\s+");
new HashMap<>();

final Map<String, Long> counts

for (String word : pattern.split(text)) {
counts.compute(word, (w, c) —> c

}

null ? 1L :

c + 1);

We can represent the computation as a DAG

(text) (word) (word, count) _
Source > > g Sink

Split the text into words Collect running totals

For each word emit (word) Once everything is finished,
emit all pairs of (word, count)

Still single-threaded execution:
each Vertex is executed in turn sequentially,
wasting the CPU cores

© 2017 Hazelcast Inc. Confidential & Proprietary

By introducing concurrent queues between the vertices
we enable each vertex to run concurrently

(word, count)

Tokenize Accumulate

Split the text into words Collect running totals.

For each word emit (word) Once everything is finished,
emit all pairs of (word, count)

© 2017 Hazelcast Inc. Confidential & Proprietary

The Accumulator vertex can also be executed
In parallel by partitioning the accumulation
step by the individual words.

Tokenize

We only need to ensure the same words
go to the same Accumulator.

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

Tokenize ' Accumulate Combine
/ “ :‘

10KENIZE g /ACCumulate v combine
Tokenize ‘ Accumulate

\

Combine

Key to Stream Processing — windows
Sliding, Tumbling and SessigR\YiRdaws

Tumbling .
(size)
L JL JL
\"4 \"4 \"4
1 2 3
Sliding
(size + step)
L J
A\
1
L)
\"4
2
L y,
\"4
3
Session : 3
(timeout) :
——

> Unordered and Late Data Handling

Unordered and Late Data

Events
timestamps) 11 14 12 33 22 35 x

Windows 10-19 20 - 29 30 -39

a hazelcast

Job Elasticity

* Jobs are elastic - they can dynamically scale to make use of all available
members, following cluster topology changes

* Job state and lifecycle are saved to IMDG IMaps and benefit from their
performance, resilience, scale and persistence

* Automatic re-execution of part of the job in the event of a failed worker

* Tolerant of loss of nodes; missing work will be recovered from last
snapshot and re-executed

* Cluster can be scaled without interrupting jobs - jobs benefit from the
increased capacity

* State and snapshots can be persisted to resume after cluster restart
(Version 3.0)

I3 hazelcast

> Stream Processing Use-Case - Payments Processing

What If? Customer History

et A AAAAAAAAA

Values

ocatons A HAEEENENEN
il ¥ X X R X X X X
et HEHEBEEEEEN
Y AAAAAAAAAA

Payment “What Ifs?”
- What are their balances? - Risk > Payment > Identify fraud > Block payment
- What is their history? - Opportunity > Real-time Offers > Upsell

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 33

> Payment Processing Case Study Cal

Challenge

» Before settling a transaction, payment processing systems check the merchant details by forwarding
them to the card's issuing bank or association for verification, and carry out anti-fraud measures

+ Each step in this pipeline requires the lowest possible latency to deliver a positive customer

experience
o . N . Customer Success
« With 24/7 global operations and hard SLAs, resiliency and automatic recovery are a must-have
Solution * A global information

o , o o technology solutions
+ Within the payment processing application, Jet acts as the pipeline for each payment process step company
 The payment mana’g(.ame.nt application orc'he'strates XML payment mstruc.tlons and forwards themto | , Processing 10's of 1,000's of
the respective card'’s issuing bank or association for verification, then carries out anti-fraud measures
: . payments per second
before settling transactions today

* Multiple Jet processing jobs are pipeline components. Hazelcast IMDG distributed IMaps are used for

transaction ingestion and messaging » Built-in scalability to

support future business

Why Hazelcast Jet

* High-performance connectors between Jet and IMDG enable low-latency operations; consistent
low latency of the Hazelcast platform keeps the CGI payment management application within
strictest SLA requirements

* Automatic recovery of the Jet cluster achieves high-availability even during failures
* Open source, standards-based avoids vendor lock-in = hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 35

» Use-Case - Infrastructure Monitoring

What If?

CamPing AAAAAAAAAA

Sensor

Driling EEEEEEEREEEN

Sensors

Weather 00000060
Environment - - - - - - - - - - -

Sensor

Jusiness AAAAAAAAAA

Context

Infrastrucure “What Ifs?”

- What components will fail or require maintenance?
- Should | increase/decrease rate of drilling?

- Can | optimize production?

a hazelcast

© 2018 HAZELCAST |
36

Use-Case Instance - Oil Infrastructure

O

Single View of
Operations

'z

Analytics & Bl

W

m rig settings
Events
in real time
- Active
Q Decisions Components
Jet / IMDG
Cluster

Data Center Stream Processing Operational Site - Edge Processing - Jet uniquely able to run in Edge

Ingest & Consolidation . Real-time Low-latency Edge Decisions

Enterprise-Wide Activity Tracking & Scheduling . Data Ingest, Filtering, & Aggregation to Feed Data Center (save bandwidth

© 2018 Hazelcast Inc. Confidential & Proprietary

Edge Processing: Oil & Gas Field Ssigmastream
Equipment Monitoring

Challenge On Site
Leading oil & gas system integrator, specializing in acquisition, persistence, secure
transportation and dissemination of high-frequency sensor data needed low-latency In Truck
early issue detection and automated remediation to avoid production loss and optimize _II -
.« . : vents
We” prOdUCtIVIty _— 5 Ingestion Operational
. < Storage
SOIUthn sensors Decisions Pre Cleanin
. Active Parts Processing °
» Hazelcast Jet, as processing backbone of application monitoring well sensors with Live Decision
varying formats and frequency, computes data insights to decisions moghts] Modne
* Jet adjusts rig settings in real time
« Embedded Hazelcast IMDG as operational data store for easy scaling (bare metal or Data Center
AWS) %
Why HazelcaSt JEt Active Parts Low-bandwidth
« Embeddability into constrained environments < Hetor
i DWH
No dependencies S Gathering 50,000+
« Performance and scalability Storage events per second

- In-memory data store with parallel processing enables scalable, real-time analytics throughout the process

« Open source, standards-based avoids vendor lock-in

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 39

e

Gy

——— N

N

"
T A 8 T,

.l

«.-'fil& 2

- B

i AN A

. ‘.‘".“\ P
L gseesyed
; s «_.‘\‘-(-&..'009_
N T e
Pk ; "»:: ",.'&'OJQ,"
he “\ < wage®

£ N, 5 F

‘;“y:—;‘t;. = ‘

.
.

e PR RR R : *C7e.. - S19648B3I000,58094565
A SN T i % : ,' 5 '
. ".. . 2‘:_‘.}‘1 _/:f. | \ } X . A 4 -

> Select Customers by Industry

50 of the

world's largest
financial services
companies

6 of the
world's largest
e-commerce
companies

7 of the

world's largest
communications
companies

High-Tech Sl
Ly Entertainment
PEGA & edicom
~ -
Ar(SIg_m?E VORWERK . " Q) <> interactive
N COMCAST gamesys 3 Entertainment
oarcer GUNGHTNE TRUVENSY g, - — wiental TFadip,,
fon™ medioocedn K’ parks and Resons DES JEUX ‘@
- @ Mtesort _ > e sch wesesnor Consumer & Ecommerce
Telecommunications Symiverse Schneider Brtin o Accor Cl sen KOHLS
bystoms Ny o Charter Spectum» (® boulanger
- L =)
Globetouch 9 broadsoft — Jfrog workfront) Walmart
= QD lﬂ N PEPSICO @
L:‘ER.\GEYIJFY west , /,\ @ .
T atat nextbus . Sl . Peap Od
HARRIS > SpinSci . CenturyLink ' THE LIMITED ASSomve Y- JCPenney
& . Allianz @ % V VALE $BB CFF FFS navis
USAA H R ’\ Saes A¥55§§ GENERAL DYNAMICS %]]
Insurance R hdaly ¥ Logistics
PayPal Ellie COMMERZBANK « datapsrt
R Incommr Deutsche Bank HSBC > C@ .
'A’t;‘
3 National Australia Bank BBVA MIZWHO Morgan Stanley CREDIT SUISSF_“ KESTRA

&% Postbank A pICTET gemalto’ - Bankof America : uoros
¢ : : VISA @ ,,.‘/\/ sulgchinam:ial GROUP ﬁ
d IYPERWALLE 5 d .
e \Q}rax it m} T S ggﬂ:k%?(change JPMORGAN CHASE & Co. BASE
[3 | pow Jones cal i : A F CESKAS ENVESTNET
Saasea 3] Bank Banking & Financial Services SPORITELNA == Fhance Looin

© 2019 HAZELCAST Confidential & Proprietary | 41

a hazelcast

> Use-Case - Payments Processing

What If? Customer History

Personalized
Payment
Instructions

et AAAAAAAAAA

Values

ocaions MM EEEEENER
i Y X X X XXX XK
et A HEEEEEEE
Y AAAAAAAAAA

Payment “What Ifs?”
What are their balances? - Risk > Payment > Identify fraud > Block payment
What is their history? - Opportunity > Real-time Offers > Upsell

I3 hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 42

> ETL Case Study

Challenge

Finantix’

Valuable information such as accounts, portfolios, positions, policies, assets and holdings has to be loaded from multiple sources and

systems in order to be analyzed and broken down
This involves loading, normalizing, reclassifying, combining and aggregating in large scale
With hard SLAs, high throughput, resiliency and automatic recovery are a must-have

Solution

Within the analytical application, Jet acts as the ETL pipeline for loading and pre-processing the data

Data has to be available for analysis as soon as possible. Jet distributes the ETL job across the
cluster to reduce the processing time. This allows operations under hard SLAs

ETL jobs may fail as a result of hardware fault. Restarting the processing would lead to breaking the
SLA. Jet brings resilience - the ETL job can resume from where it left off

Reading from various systems of record is made possible by wide range of connectors in Jet library

Why Hazelcast Jet

Embeddable architecture of Jet allows OEMing Jet into Finantix products making deployment into
conservative and restrictive banking environments possible

Automatic recovery of the Jet cluster achieves high-availability even during failures
Open source, standards-based avoids vendor lock-in

© 2019 HAZELCAST Confidential & Proprietary | 43

Customer Success

* A global fintech company
founded in 1994

* Helps leading financial
institutions digitize and
transform key processes in
the financial services
industry

» Built-in scalability to
support future business

a hazelcast

> Use-Case - Personalization - Online Retalil

What If? Customer Interests

o AAAAAAAAAA
s 8 8 8 0 0 B B B B

Views

Searches ...‘.....
avews I B HEBEEEREENR

e A AAAAAAAAA

Clicks

Shopping Cart “What Ifs?”
Have they paused shopping? - Risk > Cart Abandonment > Offer free shipping > Convert
Are there offers correlated to their interactions - Opportunity > Real-time Offers > Upsell

© 2019 HAZELCAST Confidential & Proprietary | 44

Personalized
Experience
& Insights

Consumer m
e 0

I3 hazelcast

Why Latency Matters - Real-time Offers

% v
Consumer PN _ kO
Shopping [@ Product ——, Product » Addingto —— , PAUSE to , Check Out
Flow s Search Views Cart Compare

s 7

Cart at Risk ——— Dynamic
Offer

eCommerce . . .

App Servers
| a9
- Insights
Jet Cluster i DECIS‘IO{'IS
- Predictions
- Alerts

Write

Throughto.w.

- —
1 —

© 2018 Hazelcast Inc. Confidential & Proprietary

Stream Processing with Machine
Learning

Moving Actions from Reactive to Pro-Active

Taking Action before ne af‘ ive impact

Stream Prdcessing - ata in Motion

-

2\

NS
conel (el [Tl

IMDG - Data at Rest

© 2019 HAZELCAST Confidential & Proprietary | 46

> Stream Processing
Key Capabilities

:ntial & Proprie ' [haZEIcaSt

Directed Acyclic Graphs

Each vertex is a step in the computation

(@)

It is a generalisation of the MapReduce paradigm

(@)

Supports both batch and stream processing

(@)

Other systems that use DAGs: Apache Tez, Flink, Spark,
torm

©)
© 2019 HAZELCAST Confidential & Proprietar;

Example: Word Count

e Naive, single threaded world:
1. Iterate through all the lines
2. Split the line into words

3. Update running total of counts with each word

final String text = "...";
final Pattern pattern = Pattern.compile("\\s+");
final Map<String, Long> counts = new HashMap<>();

for (String word : pattern.split(text)) {
counts.compute(word, (w, ¢) —=> c == null ? 1L : c + 1);
¥

© 2019 HAZELCAST Confidential & Proprietary | 49

We can represent the computation as a DAG

(text) (word) (word, count) _
Source Sink

Split the text into words Collect running totals

For each word emit (word) Once everything is finished,
emit all pairs of (word, count)

Still single-threaded execution:
each Vertex is executed in turn sequentially,
wasting the CPU cores

© 2017 Hazelcast Inc. Confidential & Proprietary

By introducing concurrent queues between the vertices
we enable each vertex to run concurrently

(text) (word)
Source 1T T

Split the text into words Collect running totals.

For each word emit (word) Once everything is finished,
emit all pairs of (word, count)

(word, count)

Sink

© 2017 Hazelcast Inc. Confidential & Proprietary

The Accumulator vertex can also be executed
In parallel by partitioning the accumulation
step by the individual words.

(word)
p
. -
Q¢ Q/oo
(/,)0
/o@/ 6
O(
\\ﬁ
(wo rd

We only need to ensure the same words
go to the same Accumulator.

Source

© 2017 Hazelcast Inc. Confidential & Proprietary

The steps can also be distributed across multiple nodes.
To do this you need a distributed partitioning scheme.

I OKenize Accumulate combine

© 2017 Hazelcast Inc. Confidential & Proprietary

Data Inputs(Sources) and
Outputsmﬁgf‘:he (JCache), (batch and streaming

Hazelcast IMap (batch and streaming of changes)
e Hazelcast IList (batch)
e HDFS (batch)
* Kafka (streaming)
* Socket (text encoding) (streaming)
* File (batch)
* FileWatcher (streaming - as new files appear)
JDBC (batch)
NoSQL (Cassandra, MongoDB)
Time Series (InfluxDB)
JMS (streaming)

e Custom using simple builders (batch and
streaming)

© 2019 HAZELCAST Confidential & Proprietary | 55

Key to Stream Processing - windows
Sliding, Tumblmgoand Sessmn Windows

Tumbling
(size)

Sliding
(size + step)

Session
(timeout)

ST Confidential & Proprietary | 56

> Unordered and Late Data Handling

Unordered and Late Data

Events
timestampsy 11 14 1233 22 35 >

Windows 10-19 20 - 29 30-39

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 57

Job Elasticity

* Jobs are elastic - they can dynamically scale to make use of all available
members, following cluster topology changes

* Job state and lifecycle are saved to IMDG IMaps and benefit from their
performance, resilience, scale and persistence

* Automatic re-execution of part of the job in the event of a failed worker

* Tolerant of loss of nodes; missing work will be recovered from last
snapshot and re-executed

* Cluster can be scaled without interrupting jobs - jobs benefit from the
increased capacity

* State and snapshots can be persisted to resume after cluster restart
(Version 3.0)

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 58

> Jet Management Center: Dashboard

Q hazelcast

Start Time
Streaming Job - 07-04-2018 09:19:52
Streaming Job - 3 07-04-2018 09:19:52
Streaming Job - -2018 09:19:52
Streaming Job - 07-04-2018 09:19:52
Streaming Job - 07-04-2018 09:19:52
Streaming Job - 07-04-2018 09:19:52
Streaming Job - 07-04-2018 09:19:52
Streaming Job - 07-04-2018 09:19:52

ning Job - 9 07-04-2018 09:19:52

Cluster Summary

310/10 154/7282

0920 0920 0922 0923 0923

Time Description

07-04-2018 09:24:09 Exception in Proc

Uptime

5 mins

© 2019 HAZELCAST Confidential & Proprietary | 59

Failed Jobs

Running Jobs

a hazelcast

Jet Management Center: Job Detail

|job Details

FlightTelemetry

Job Details
09:26:11 01:09 74

tart time

© 2019 HAZELCAST Confidential & Proprietary | 60

| Record Flow

| Snapshot Details

< x

restat cancel ‘ Job Lifecycle

Last Successful Snapshot
1 sec ago 254.02 kB 16

completion

Vertex: Filter aircraft in low altitudes 2

Parallelism
]

‘ DAG Vertex Details

Incoming Records
Ordinal #0 259K
Total 259K

Outgoing Records
Ordinal #0 18K

Total 1.8K

DAG Visualization

a hazelcast

> Security Suite Features

Communication Security TLS 1.2

Business Applications
(IMDG and Jet Clients)
Authenticate / Authorize Roles

Hazelcast Jet Cluster

Process Security Corporate
Information
Data Security Security
(LDAP/AD)

Record-level Security

Auditable
<+«—TLS Mutual Authentication——»

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 61

> Fault Tolerance: Distributed State Snapshots

Z‘ Exactly-Once, At-Least Once or No Guarantee to
optimize between performance and correctness

Distributed State Snapshots to back-up running
‘) computations

Resilience with backups distributed and replicated across
the cluster to prevent losing data when member fails

=

Simplicity as the snapshots are stored in embedded in-
memory structures. No further infrastructure is necessary

v

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 63

> Lossless Recovery: Automatic Job Resumptﬁ)n

Only Hot Restart Stores remain:

Hot Restart
Store
Hot Restart Hot Restart
Store Store

Source Stream: rewinding
0 1 2 3

After Restart, resume from checkpoint 3:

1 1 1 1

3 4 5 6

© 2019 HAZELCAST Confidential & Proprietary | 65

When cluster is restarted, Jet discovers it was
shut down with running jobs

Jet restarts the jobs
Checkpoints are recovered

For streaming, rewindable sources are
rewound using saved offsets (Kafka, Hazelcast
IMap, Hazelcast ICache events). If the source
cannot be fully rewound, the job is terminated
with error, or continued, depending on
configuration

Batch sources are resumed from last pointer,
otherwise from the beginning

a hazelcast

> Rolling Job Upgrades

* Allow jobs to be upgraded without data loss or interruption
* Rolling upgrades make use of Jet state snapshots
* ViaJob APl and Man Center

Processing Steps

. Jet stops the current Job execution

It then takes the state snapshot of the current Job and saves it
. The new classes/jars are distributed to the Jet nodes

. The job then restarts

Data is read from the saved snapshots

. All of this in a few milliseconds

OUTAWN =

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 66

> Jet Application Deployment Options

Embedded Client-Server

_-7 iy Java APl R

1
I I
~
’ E ~
7’ N
V4 N
4 s
// S o ’/'
/

v Java API v Java API Application Application Application Application
i JavaClient i Java Client i JavaClient i JavaClient

Application

l ’—— —~\
~
~
7’
’
-,
-
_-
‘*—————’

 No separate process to manage

Separate Jet Cluster

e Great for microservices / constrained
/Edge

* Great for OEM Managed by Ops M
- Simplest for Ops - nothing extra 0 hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 67

Scale Jet independent of applications

Isolate Jet from application server lifecycle

> Hazelcast IMDG Cloud Discovery & Deployment

Cloud & Cloud Discovery Plugins

kubernetes
h[HEROKU

(®-:: CONSUL -= Microsoft Azure

n ZooKeeper eth

&

Pivotal Cloud Foundry:

© 2019 HAZELCAST Confidential & Proprietary | 69

. Apache jClouds .j"afnazon
8 web

services

Deployment Options

~ -&*docker
'@hadaap YARN

MESOS

AVAVA
AVAVAVA
VAVAVAVY

VAVAY

PaaS Environment Integrations

5 IBM Cloud

£5 OPENSHIFT
o J EE

a hazelcast

> Hazelcast Jet & IMDG Enterprise for

Red Hat OpenShift Container Platform

Simplifies deployment of Jet Enterprise standalone RED HAT
OPENSHIFT

infrastructure, as a certified Red Hat Enterprise Linux |
based image. Package consists of: Container Platform

® Hazelcast Jet Enterprise and related dependencies

Browse Catalog Deploy Image Import YAML / JSON

. d . .

Re H at E nte r p rl S e I—I n u X (R H E L) 7 . 3 Create or replace resources from their YAML or JSON definitions. If adding a template, you'll have the option to process the template.
¢ I

O ra C e J ava 8 Upload file by dragging & dropping, selecting it, or pasting from the clipboard
. . . Clear Value

Health and liveness scripts)

“kind": "Templote", Browse Catalog Deploy Image Import YAML / JSON
. “metadata”: {
"name": "hazelcast-openshift-rhel”,

“tags": “"hazelcast, imdg, datagrid, inmemory, kvstore
*{conClass™; “icon-java® 2 © Image Stream Tag

Sta rt a n d Sto p SC ri pts : “annotations": { Deploy an existing Image from an image stream tag or Docker pull spec.
7 “description”: "Openshift deployment template for Hoz|
Jet Enterprise for OpenShift Features: I T—

® Hazelcast can be run inside OpenShift, benefiting from its cluster s s s et
management software, Kubernetes, for discovery of members 1 | ovjects: 11 D
19 “kind": "Repiiczi:(’)n(oﬂtmller",

20 "metadata": {

® Ability to dynamically pass your Hazelcast configuration in JSON - e S e s
format while creating services « T mage il be depoye i e
m Cancel

D OW n I oa d a t: ‘ Other containers can access this
https://hazelcast.org/plugins/#hazelcast-openshift-

° ° Identifies the resources created for this image.
integration

a hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 70

> Why Hazelcast Jet?

High performance | Industry Leading Performance

Works great with Hazelcast IMDG | Source, Sink, Enrichment
Very simple to program | Leverages existing standards

Very simple to deploy | Embed 12MB jar or Client Server

Works in every Cloud | Same as Hazelcast IMDG I3 hazelcast

© 2019 HAZELCAST Confidential & Proprietary | 71

