
RedisGears	–	Redis	in	memory	
data	processing
JUNE 2019 | PIETER CAILLIAU

• Produced	in	Belgium	

• (instanceof)	SE	@	TomTom	

• Consultant	@	neo4j	

• Solution	Architect	@	Redis	Labs	

• Product	Manager	@	Redis	Labs	

• @cailliaup

About	me

�2

1 What	is	Redis	and	Redis	Enterprise	

2 Stream	Processing	with	RedisGears	

3 RedisGears	as	a	Multimodel	Engine	

Agenda

�4

									Redis	is	Fast	…

�5

…	Extremely	Fast

DB-Engines	Ranking	

�6

�7

And	you’ve	been	using	it	already

Redis	is	Extensively	and	Diversely	Used

�8

Uses	Redis	for:		
Timeline,	following	

Scope:	10-20	TB

Uses	Redis	for:	
Local/site/global	caching	

Uses	Redis	for:	
Repository	router	

Scope:	10+	TB

Uses	Redis	for:	
Geo	search,	user	profiles	

Scope:	10-20	TB

Uses	Redis	for:	
All	messages	

Scope:	40	TB

Redis	Top	Differentiators

Simplicity Extensibility	Performance
NoSQL	Benchmark

1

Redis	Data	Structures

2 3

Redis	Modules

�9

Lists

Hashes

Bitmaps

Strings

Bit	field

Streams

Hyperloglog

Sorted	Sets

Sets

Geospatial	Indexes

�10

✓ Written	in	C	

✓ Served	entirely	from	memory	

✓ Single-threaded,	lock	free

✓ Most	commands	are	
executed	with	O(1)	

complexity	

✓ Access	to	discrete	elements	

within	objects	

✓ Reduced	bandwidth/
overhead	requirements

✓ Easy	to	parse	networking	
protocol	

✓ Pipelining	for	reduced	

network	overhead	

✓ Connection	pooling

OPTIMIZED	ARCHITECTURE ADVANCED	PROCESSING EFFICIENT	OPERATION

Redis	Speed	differentiators	

�11

✓ Written	in	C	

✓ Served	entirely	from	memory	

✓ Single-threaded,	lock	free

✓ Most	commands	are	
executed	with	O(1)	

complexity	

✓ Access	to	discrete	elements	

within	objects	

✓ Reduced	bandwidth/
overhead	requirements

✓ Easy	to	parse	networking	
protocol	

✓ Pipelining	for	reduced	

network	overhead	

✓ Connection	pooling

OPTIMIZED	ARCHITECTURE ADVANCED	PROCESSING EFFICIENT	OPERATION

Redis	Speed	differentiators	

• Create	your	own	data	types	and	commands	

• Reuse	Redis’	simplicity,	performance,	scalability	and	high	
availability.	

• Can	be	written	in	C/C++/Go/Python/Rust/Zig	

• Leverage	existing	data	structures	

• Turn	Redis	into	a	Multi-Model	database

Modules	Extend	Redis	Infinitely

�12

https://redislabs.com/community/redis-modules-hub/

	RediSearch	(GA)		 redisearch.io	

	RedisBloom	(GA)		 redisbloom.io	

	RedisTimeSeries		 redistimeseries.io	

	RedisJSON	(GA)		 redisjson.io	

	RedisAI		 	 redisai.io	

	RedisGraph	(GA)		 redisgraph.io

Redis	Modules

�13

///ppt/slides/redisearch.io
///ppt/slides/redisbloom.io
///ppt/slides/redistimeseries.io
///ppt/slides/redisjson.io
///ppt/slides/redisai.io
///ppt/slides/redisgraph.io

�14

Introducing	

Redis	Enterprise

�15

DBaaS	
• Available	since	mid	2013	

• 8,500+	enterprise	customers

Software	
• Available	since	early	2015	

• 300+	enterprise	customers
550K+	databases		

managed	worldwide

• 6	of	top	Fortune	10	companies	

• 3	of	top	5	communications	companies	

Customers
• 3	of	top	4	credit	card	issuers	

• 3	of	top	5	healthcare	companies	

• Cloud	Provider	

• Higher	margin	by	
– Idleness		

• Cloud	Lock-in

Cloud	Providers	have	different	incentives

�16

• DBAAS	Provider	

• Higher	margin	by	better	resource	
utilization	
– Multi-tenancy	
– Reducing	RAM	
– CPU	utilization

Redis	Enterprise	:	A	Unique	Primary	Database

HIGHEST	PERFORMANCE,	
	LINEAR	SCALING

HIGH	AVAILABILITY	WITH	INSTANT	 
FAILOVER	

DURABILITY	AT	MEMORY	SPEEDS

ACTIVE-ACTIVE	GEO	DISTRIBUTION	
(CRDT-BASED)

BUILT-IN	HIGH	PERFORMANCE  
	SEARCH

MULTI-MODEL

FLEXIBLE	DEPLOYMENT	OPTIONS		
(CLOUD,	ON-PREM,	HYBRID)

INTELLIGENT	TIERED	DATA	ACCESS	
(RAM	&	FLASH	MEMORY)

FAST RELIABLE FLEXIBLE

Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�18

Uneven	number	of	symmetric	nodes

Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�19

Single	master	database

M

Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�20

An	HA	database

SM

Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�21

A	Clustered	Database

M1 M2 M3

How	do	keys	get	assigned	to	partitions?

�22

How	do	keys	get	assigned	to	partitions?

�23

Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�24

A	Highly	Available	Clustered	Database

M1 M2 M3S3 S1 S2

Redis	Enterprise	Node

�25

Cluster	Manager

Enterprise	Layer

Open	Source	Layer

REST	API
Zero	latency	proxy

Redis	Shards

Redis	Enterprise:	Shared	Nothing	Symmetric	Architecture

Cluster	
Management	Path

Node	Watchdog	
Cluster	Watchdog

Node	1 Node	2 Node	N	(odd	number)

Redis	Shards 
&	Proxies

Data	Path

�26

Data-Path	and	Control/Management	Path	Separation	

�27

	 as	a	datagrid

Microservices	Architecture	and	Polyglot	Persistence

�28

Authentication
Authentication

Authentication

Key/Value

K V

Key/Value

K V

Key/Value

K V

Customers

Key/Value

K V

Graph

Customers
Key/Value

K V

Graph

Catalog

RDBMS Cache

Search

Session	Store

Session	Store

Session	Store

Document

Document

Document

API	

API	

API	

API	

API	

API	

API	

API	

API	

Fraud	
Detection

API	

ColumnarSearch

Fulfilment API	

RDBMS

The	Cost	of	Polyglot	Persistence

Authentication
Authentication

Authentication

Key/Value

K V

Key/Value

K V

Key/Value

K V

Customers

Key/Value

K V

Graph

Customers
Key/Value

K V

Graph

Catalog

RDBMS Cache

Search

Session	Store

Session	Store

Session	Store

Document

Document

Document

API	

API	

API	

API	

API	

API	

API	

API	

API	

Fraud	
Detection

API	

ColumnarSearch

Fulfilment API	

RDBMS

Increased	application	complexity	! Costly	communication	
	Application	does	heavy	lifting	in	sharing	data,	keeping	data	sets	in	sync

High	operational	burden	!	Higher	cost	of	ownership	
Different	databases	have	specialized	administrative,	scaling,	availability	

requirements

Sub-optimal	Resource	Usage		! Higher	cost	
Dedicating	pods/servers	for	each	type	of	database	reduces	deployment	efficiency

API	 API API API APIAPI API

Redis	Enterprise:	A	Multi-model	Database	for	Microservices	

Authentication Customers Catalog Search Fraud	Detection Session	Store

SearchGraphKey/Value

RDBMS

Key/ValueCache

RDBMS

Cache

Fulfilment

Key/Value Document

Authentication Customers Catalog Search Fraud	Detection Session	Store

SearchGraphKey/Value

RDBMS

Key/ValueCache

RDBMS

Cache

Fulfilment

Key/Value Document

Built-in	Message	Broker

Built-in	Pub-Sub	/	Streams	for	event	synch	across	data	stores	

What	are	we	missing?

• How	to	consume	messages	in	this	“built	in	message	borker”	

• Given	a	sharded	database,	how	can	I	run	analytical	queries?	

• Multi	Model	database	
– Single	copy	in	core	datatypes	
– Inter	module	communication	
– Component	X	doing	translations	between	modules.

!33

RedisGears

Introducing

RedisGears	is	a	Serverless	engine	for	multi-model	and	
cluster	operations	in	Redis,	supporting	both	event	driven	

as	well	as	batch	operations

What	is	RedisGears?

GearsCoordinator MapReducerGearsExecuter

Gears	infrastructure	is	written	in	C

C	-	API

Soon Soon

High	Performance	Architecture

RedisGears	allows	to	define	a	pipe	of	operations	

• Returning	value	from	one	operation	is	passed	to	the	next	operation	in	the	pipe	

• Last	operation	returning	the	result	to	the	user	
• First	operation	is	called	‘reader’	-	responsible	for	providing	data	

– Keys	reader	-	read	keys	from	Redis	
– Stream	reader	-	read	streams	from	Redis	
– Python	reader	-	allow	to	user	to	write	his	own	readers	in	python

Scripting	with	RedisGears

�36

• Map	

• FlatMap	

• Filter	
• Groupby	+	Reduce	
• Aggregate	
• Sort	
• Limit	

• ForEach	
• Distinct

Supported	Operations

�37

Reader
(Flat)	
Mapper

Using	RedisGears	–	(Flat)Mapping

Using	RedisGears	-	Filtering

Reader Filter	record	
with	1	doc

Using	RedisGears	-	Aggregate

Reader Count	
Aggregator

1

1

Demo

Gears	has	a	streaming	API	to	allow	to	trigger	gears	execution	on	events.	
– Redis	Stream	events	-	Trigger	an	execution	whenever	a	new	data	enters	a	steam	
– Redis	Keys	events	-	Trigger	an	operation	whenever	a	key	is	touched

Use	Case	#1	–	Stream	Processing

RedisTimeSeriesRedis	Streams

Every	sec

Because	of	RedisGears’	flexibility	(it's	actually	running	python)	you	can	achieve	internal	module	integration	with	it:	
– Read	from	hashes	and	index	in	RediSearch/RedisGraph	
– Read	RedisJSON	data	and	pass	to	RedisTimeSeries	
– …

Use	Case	#2	–	a	MultiModel	Engine

RediSearch

Redis	Hashes
Every	update

RedisGraph

#	create	the	builder		
builder	=	GearsBuilder()		
#	filter	events	on	key:'all_keys'		
builder.filter(lambda	x:	x['key']	!=	'all_keys')		
#	add	the	keys	to	'all_keys'	set		
builder.map(lambda	x:	execute('sadd',	'all_keys',	x['key']))		
#	register	the	execution	on	key	space	notification		
builder.register()	
 

 

Build	a	gear	that	creates	maintains	a	set	of	all	keys	within	redis	

								Recipe	#1	–	even	triggering

#	create	the	pipe	builder.	KeysOnlyReader	is	a	performance	improvement	only	piping	the	keys.		
builder	=	GearsBuilder('KeysOnlyReader')		
#	get	from	each	hash	the	genres	field		
builder.map(lambda	x:	execute('hget',	x,	'genres'))		
#	filter	those	who	do	not	have	genres		
builder.filter(lambda	x:	x	is	not	None)		
#	split	genres	by	comma		
builder.flatmap(lambda	x:	x.split(','))		
#	count	for	each	genre	the	number	of	times	it	appears		
builder.countby()		
#	start	the	execution		
builder.run('movie:*')

Build	a	gear	that	counts	how	often	a	genre	is	used	within	a	set	of	movies	

								Recipe	#2	–	map	reducing

#	create	the	builder	with	a	StreamReader		
builder	=	GearsBuilder('StreamReader')		
#	extract	each	field	value	pair	from	the	message	and	increase	the	pipe	granularity	
builder.flatmap(lambda	x:	[(a[0],	a[1])	for	a	in	x.items()])		
#	filter	out	the	streamId	itself		
builder.filter(lambda	x:	x[0]	!=	'streamId')		
#	make	sure	the	gears	data	lives	in	the	correct	shard		
builder.repartition(lambda	x:	x[0])		
#	apply	each	field	value	pair	to	a	key		
builder.foreach(lambda	x:	execute('set',	x[0],	x[1]))		
#	register	on	new	messages	on	the	stream	'inputStream'		
builder.register('inputStream')

Build	a	gear	that	consumes	a	stream	and	updates	keys	accordingly	

								Recipe	#3	–	stream	processing

Example	Trigger	Explained

�47

Example	Trigger	Explained

�48

Example	Trigger	Explained

�49

Example	Trigger	Explained	-	Flatmap

�50

Example	Trigger	Explained	-	Repartition

�51

Example	Trigger	Explained	-	executeCommand

�52

Demo

Demo	Setup

�54

• https://github.com/RedisGears/AnimalRecognitionDemo	

• #redisfoundmycat

Challenge?

�55

https://github.com/RedisGears/AnimalRecognitionDemo
https://github.com/RedisGears/AnimalRecognitionDemo

	RediSearch	(GA)		 redisearch.io	

	RedisBloom	(GA)		 redisbloom.io	

	RedisTimeSeries		 redistimeseries.io	

	RedisJSON	(GA)		 redisjson.io	

	RedisAI		 	 redisai.io	

	RedisGraph	(GA)		 redisgraph.io

Redis	Modules

�56

RedisGears						redisgears.io

///ppt/slides/redisearch.io
///ppt/slides/redisbloom.io
///ppt/slides/redistimeseries.io
///ppt/slides/redisjson.io
///ppt/slides/redisai.io
///ppt/slides/redisgraph.io
///ppt/slides/redisgears.io

Thank	you! 
pieter@redislabs.com

�57

