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1 What	is	Redis	and	Redis	Enterprise	

2 Stream	Processing	with	RedisGears	

3 RedisGears	as	a	Multimodel	Engine	

Agenda
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									Redis	is	Fast	…
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…	Extremely	Fast



DB-Engines	Ranking	
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And	you’ve	been	using	it	already



Redis	is	Extensively	and	Diversely	Used
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Uses	Redis	for:		
Timeline,	following	

Scope:	10-20	TB

Uses	Redis	for:	
Local/site/global	caching	

Uses	Redis	for:	
Repository	router	

Scope:	10+	TB

Uses	Redis	for:	
Geo	search,	user	profiles	

Scope:	10-20	TB

Uses	Redis	for:	
All	messages	

Scope:	40	TB



Redis	Top	Differentiators

Simplicity Extensibility	Performance
NoSQL	Benchmark

1

Redis	Data	Structures

2 3

Redis	Modules
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Lists

Hashes

Bitmaps

Strings

Bit	field

Streams

Hyperloglog

Sorted	Sets

Sets

Geospatial	Indexes
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✓ Written	in	C	

✓ Served	entirely	from	memory	

✓ Single-threaded,	lock	free

✓ Most	commands	are	
executed	with	O(1)	

complexity	

✓ Access	to	discrete	elements	

within	objects	

✓ Reduced	bandwidth/
overhead	requirements

✓ Easy	to	parse	networking	
protocol	

✓ Pipelining	for	reduced	

network	overhead	

✓ Connection	pooling

OPTIMIZED	ARCHITECTURE ADVANCED	PROCESSING EFFICIENT	OPERATION

Redis	Speed	differentiators	
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• Create	your	own	data	types	and	commands	

• Reuse	Redis’	simplicity,	performance,	scalability	and	high	
availability.	

• Can	be	written	in	C/C++/Go/Python/Rust/Zig	

• Leverage	existing	data	structures	

• Turn	Redis	into	a	Multi-Model	database

Modules	Extend	Redis	Infinitely
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https://redislabs.com/community/redis-modules-hub/



	RediSearch	(GA)		 redisearch.io	

	RedisBloom	(GA)		 redisbloom.io	

	RedisTimeSeries		 redistimeseries.io	

	RedisJSON	(GA)		 redisjson.io	

	RedisAI		 	 redisai.io	

	RedisGraph	(GA)		 redisgraph.io

Redis	Modules
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///ppt/slides/redisearch.io
///ppt/slides/redisbloom.io
///ppt/slides/redistimeseries.io
///ppt/slides/redisjson.io
///ppt/slides/redisai.io
///ppt/slides/redisgraph.io
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Introducing	



Redis	Enterprise
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DBaaS	
• Available	since	mid	2013	

• 8,500+	enterprise	customers

Software	
• Available	since	early	2015	

• 300+	enterprise	customers
550K+	databases		

managed	worldwide

• 6	of	top	Fortune	10	companies	

• 3	of	top	5	communications	companies	

Customers
• 3	of	top	4	credit	card	issuers	

• 3	of	top	5	healthcare	companies	



• Cloud	Provider	

• Higher	margin	by	
– Idleness		

• Cloud	Lock-in

Cloud	Providers	have	different	incentives
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• DBAAS	Provider	

• Higher	margin	by	better	resource	
utilization	
– Multi-tenancy	
– Reducing	RAM	
– CPU	utilization



Redis	Enterprise	:	A	Unique	Primary	Database

HIGHEST	PERFORMANCE,	
	LINEAR	SCALING

HIGH	AVAILABILITY	WITH	INSTANT	 
FAILOVER	

DURABILITY	AT	MEMORY	SPEEDS

ACTIVE-ACTIVE	GEO	DISTRIBUTION	
(CRDT-BASED)

BUILT-IN	HIGH	PERFORMANCE  
	SEARCH

MULTI-MODEL

FLEXIBLE	DEPLOYMENT	OPTIONS		
(CLOUD,	ON-PREM,	HYBRID)

INTELLIGENT	TIERED	DATA	ACCESS	
(RAM	&	FLASH	MEMORY)

FAST RELIABLE FLEXIBLE



Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)
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Uneven	number	of	symmetric	nodes



Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)
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Single	master	database

M



Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)
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An	HA	database

SM



Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)

�21

A	Clustered	Database

M1 M2 M3



How	do	keys	get	assigned	to	partitions?
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How	do	keys	get	assigned	to	partitions?
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Redis	Enterprise	Cluster

Node	1 Node	2 Node	N	(odd	number)
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A	Highly	Available	Clustered	Database

M1 M2 M3S3 S1 S2



Redis	Enterprise	Node
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Cluster	Manager

Enterprise	Layer

Open	Source	Layer

REST	API
Zero	latency	proxy

Redis	Shards



Redis	Enterprise:	Shared	Nothing	Symmetric	Architecture

Cluster	
Management	Path

Node	Watchdog	
Cluster	Watchdog

Node	1 Node	2 Node	N	(odd	number)

Redis	Shards 
&	Proxies

Data	Path
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Data-Path	and	Control/Management	Path	Separation	
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	 as	a	datagrid



Microservices	Architecture	and	Polyglot	Persistence
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Authentication
Authentication

Authentication

Key/Value

K V

Key/Value

K V
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The	Cost	of	Polyglot	Persistence

Authentication
Authentication

Authentication

Key/Value

K V

Key/Value

K V

Key/Value
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Increased	application	complexity	! Costly	communication	
	Application	does	heavy	lifting	in	sharing	data,	keeping	data	sets	in	sync

High	operational	burden	!	Higher	cost	of	ownership	
Different	databases	have	specialized	administrative,	scaling,	availability	

requirements

Sub-optimal	Resource	Usage		! Higher	cost	
Dedicating	pods/servers	for	each	type	of	database	reduces	deployment	efficiency



API	 API API API APIAPI API

Redis	Enterprise:	A	Multi-model	Database	for	Microservices	

Authentication Customers Catalog Search Fraud	Detection Session	Store

SearchGraphKey/Value

RDBMS

Key/ValueCache

RDBMS

Cache

Fulfilment

Key/Value Document



Authentication Customers Catalog Search Fraud	Detection Session	Store

SearchGraphKey/Value

RDBMS

Key/ValueCache

RDBMS

Cache

Fulfilment

Key/Value Document

Built-in	Message	Broker

Built-in	Pub-Sub	/	Streams	for	event	synch	across	data	stores	



What	are	we	missing?

• How	to	consume	messages	in	this	“built	in	message	borker”	

• Given	a	sharded	database,	how	can	I	run	analytical	queries?	

• Multi	Model	database	
– Single	copy	in	core	datatypes	
– Inter	module	communication	
– Component	X	doing	translations	between	modules.
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RedisGears

Introducing



RedisGears	is	a	Serverless	engine	for	multi-model	and	
cluster	operations	in	Redis,	supporting	both	event	driven	

as	well	as	batch	operations

What	is	RedisGears?



GearsCoordinator MapReducerGearsExecuter

Gears	infrastructure	is	written	in	C

C	-	API

Soon Soon

High	Performance	Architecture



RedisGears	allows	to	define	a	pipe	of	operations	

• Returning	value	from	one	operation	is	passed	to	the	next	operation	in	the	pipe	

• Last	operation	returning	the	result	to	the	user	
• First	operation	is	called	‘reader’	-	responsible	for	providing	data	

– Keys	reader	-	read	keys	from	Redis	
– Stream	reader	-	read	streams	from	Redis	
– Python	reader	-	allow	to	user	to	write	his	own	readers	in	python

Scripting	with	RedisGears
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• Map	

• FlatMap	

• Filter	
• Groupby	+	Reduce	
• Aggregate	
• Sort	
• Limit	

• ForEach	
• Distinct

Supported	Operations

�37



Reader
(Flat)	
Mapper

Using	RedisGears	–	(Flat)Mapping



Using	RedisGears	-	Filtering

Reader Filter	record	
with	1	doc



Using	RedisGears	-	Aggregate

Reader Count	
Aggregator

1

1



Demo



Gears	has	a	streaming	API	to	allow	to	trigger	gears	execution	on	events.	
– Redis	Stream	events	-	Trigger	an	execution	whenever	a	new	data	enters	a	steam	
– Redis	Keys	events	-	Trigger	an	operation	whenever	a	key	is	touched

Use	Case	#1	–	Stream	Processing

RedisTimeSeriesRedis	Streams

Every	sec



Because	of	RedisGears’	flexibility	(it's	actually	running	python)	you	can	achieve	internal	module	integration	with	it:	
– Read	from	hashes	and	index	in	RediSearch/RedisGraph	
– Read	RedisJSON	data	and	pass	to	RedisTimeSeries	
– …

Use	Case	#2	–	a	MultiModel	Engine

RediSearch

Redis	Hashes
Every	update

RedisGraph



#	create	the	builder		
builder	=	GearsBuilder()		
#	filter	events	on	key:'all_keys'		
builder.filter(lambda	x:	x['key']	!=	'all_keys')		
#	add	the	keys	to	'all_keys'	set		
builder.map(lambda	x:	execute('sadd',	'all_keys',	x['key']))		
#	register	the	execution	on	key	space	notification		
builder.register()	
 

 

Build	a	gear	that	creates	maintains	a	set	of	all	keys	within	redis	

								Recipe	#1	–	even	triggering



#	create	the	pipe	builder.	KeysOnlyReader	is	a	performance	improvement	only	piping	the	keys.		
builder	=	GearsBuilder('KeysOnlyReader')		
#	get	from	each	hash	the	genres	field		
builder.map(lambda	x:	execute('hget',	x,	'genres'))		
#	filter	those	who	do	not	have	genres		
builder.filter(lambda	x:	x	is	not	None)		
#	split	genres	by	comma		
builder.flatmap(lambda	x:	x.split(','))		
#	count	for	each	genre	the	number	of	times	it	appears		
builder.countby()		
#	start	the	execution		
builder.run('movie:*')

Build	a	gear	that	counts	how	often	a	genre	is	used	within	a	set	of	movies	

								Recipe	#2	–	map	reducing



#	create	the	builder	with	a	StreamReader		
builder	=	GearsBuilder('StreamReader')		
#	extract	each	field	value	pair	from	the	message	and	increase	the	pipe	granularity	
builder.flatmap(lambda	x:	[(a[0],	a[1])	for	a	in	x.items()])		
#	filter	out	the	streamId	itself		
builder.filter(lambda	x:	x[0]	!=	'streamId')		
#	make	sure	the	gears	data	lives	in	the	correct	shard		
builder.repartition(lambda	x:	x[0])		
#	apply	each	field	value	pair	to	a	key		
builder.foreach(lambda	x:	execute('set',	x[0],	x[1]))		
#	register	on	new	messages	on	the	stream	'inputStream'		
builder.register('inputStream')

Build	a	gear	that	consumes	a	stream	and	updates	keys	accordingly	

								Recipe	#3	–	stream	processing



Example	Trigger	Explained
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Example	Trigger	Explained
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Example	Trigger	Explained
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Example	Trigger	Explained	-	Flatmap
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Example	Trigger	Explained	-	Repartition
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Example	Trigger	Explained	-	executeCommand
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Demo



Demo	Setup
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• https://github.com/RedisGears/AnimalRecognitionDemo	

• #redisfoundmycat

Challenge?
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https://github.com/RedisGears/AnimalRecognitionDemo
https://github.com/RedisGears/AnimalRecognitionDemo
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RedisGears						redisgears.io

///ppt/slides/redisearch.io
///ppt/slides/redisbloom.io
///ppt/slides/redistimeseries.io
///ppt/slides/redisjson.io
///ppt/slides/redisai.io
///ppt/slides/redisgraph.io
///ppt/slides/redisgears.io


Thank	you! 
pieter@redislabs.com
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