
Build and Deploy Digital Twins on an IMDG
for Real-Time Streaming Analytics

Dr. William L. Bain, Founder & CEO
ScaleOut Software, Inc.

June 3, 2019

2

Dr. William Bain, Founder & CEO of ScaleOut Software:
• Email: wbain@scaleoutsoftware.com
• Ph.D. in Electrical Engineering (Rice University, 1978)
• Career focused on parallel computing – Bell Labs, Intel, Microsoft
• 3 prior start-ups, last acquired by Microsoft and product now ships as Network Load

Balancing in Windows Server

ScaleOut Software develops and markets In-Memory Data Grids, software for:
• Scaling application performance with

in-memory data storage
• Operational intelligence: analyzing live

data in real time with in-memory computing
14+ years in the market; 450+ customers, 12,000+ servers

About the Speaker

3

Agenda

• Goals and challenges for stream-processing
• What are real-time digital twins? Why use them?
• Advantages in comparison to traditional approaches
• Target use cases
• Using in-memory computing to host digital twins
• New APIs designed for building digital twins & code sample
• Implementing digital twin models on an in-memory data grid (IMDG)
• Deploying digital twin models in a cloud service

4

Goals of Stream-Processing

Goal: maximize situational awareness & real-time control
How:
• Process incoming data streams from many thousands of devices.
• Analyze events for patterns of interest.
• Provide timely (real-time) feedback and alerts.
• Provide aggregate analytics to identify patterns.

Many applications in IoT and beyond:
• Medical monitoring
• Logistics & manufacturing
• Disaster recovery & security
• Financial trading & fraud detection
• Ecommerce recommendations

Event Sources

5

Quick Example: Medical Refrigerators

Cloud-based streaming service
monitors 7000+ medical refrigerators:
• Refrigerators hold highly important

tissue samples, embryos, etc.
• Service receives periodic telemetry:

• Temperature
• Power consumption
• Door position, etc.

• Must predict failure before it occurs:
• Notify user to migrate contents to

another refrigerator.
• Avoid false positives.
• Identify widespread power outages.

6

Challenges for Stream-Processing

Popular software platforms (Flink, Storm, Beam) are pipeline-oriented.

Creates complexity challenges:
• Difficult to: correlate events by each data source, track state, embed analytics

Creates performance challenges:
• Difficult to: respond with low latency, scale for thousands of data sources

Requires aggregate analytics to be performed offline.

7

Typical Approach: Lambda Architecture

Adds complexity to applications that provide real-time analytics:
• Separates real-time processing (“speed layer”) from data-parallel

analytics (“batch layer”).
• Allows only rudimentary analysis

and response in real time.
• Defers aggregate analysis

to offline processing (e.g.,
Spark, database query).

• Limits real-time introspection.
Is there a better approach? https://commons.wikimedia.org/w/index.php?curid=34963987

8

Real-Time Digital Twins

A new software technique for stream-processing:
• Automatically correlates telemetry from each device or data source.
• Tracks dynamic state for each data source.
• Provides a software framework for hosting application logic (e.g., rules, ML).
• Enables real-time aggregate analysis in place.

9

• Created by Michael Grieves for product design and life cycle management
(PLM); popularized by Gartner:
• A virtual version of a physical entity
• Also, context to interpret telemetry

streaming back from the field

• Also:
• AWS device shadow: cloud-based repository for per-device state information with

pub/sub messaging
• Azure IoT device twin: JSON document that stores per-device state information

(metadata, conditions)
• Azure digital twin: spatial graph of spaces, devices, and people for modeling

relationships in context

• These uses are not for real-time stream-processing.

Other Uses of the Term “Digital Twin”

10

Anatomy of a Real-Time Digital Twin

A real-time digital twin model describes how to process incoming events
from a specific type of data source (e.g., a wind turbine).
• Consists of a message processor method and a state object definition:
• Message processor:

• Receives and analyzes events and commands.
• Encapsulates analysis algorithm.
• Generates alerts and outbound device messages.

• State object holds dynamic, per-device data:
• Dynamic context for analyzing events
• Also: time-ordered event lists, cached parameters
• One instance per data source (device)

11

Advantages of Real-Time Digital Twins

Simplifies application design:
• Provides automatic event correlation and access to per-device state.
• Uses an object-oriented approach to encapsulate state and behavior.

Enables deeper introspection in real time:
• Dynamically tracks state

of each device to help
analyze incoming events.

• Provides orchestration
for analytics code (e.g.,
rules engine, ML).

• Enables integrated,
aggregate analysis.

Runs well on IMDGs.

12

Simplifies Application Design

State-centric approach (vs. event-centric):
• Avoids event correlation

in the application.
• Avoids need for

ad hoc state storage.
• Encapsulates analysis

logic in one place.
• Provides automatic

domain for aggregate
analysis.

13

Digital Twins Can Access Historical State

• Digital twins store dynamic
state information in memory for
fast access.

• Also can retrieve slowly-
changing data from a database:
• Device parameters
• Maintenance history

• Can update database:
• Event-message history
• Significant changes to the device

14

Enables Aggregate Analysis

Real-time digital twins create a natural domain for data-parallel analysis:

15

Aggregate Analysis with MapReduce

A well-known, data-parallel technique:
• Aggregates property values across

all instances of a model.
• Allows results to be grouped

according to the value of another
property.
• Example: Ave. vehicle speed by county

• Runs seamlessly within an IMDG:
• Runs concurrently with event processing.
• Avoids network bottlenecks.
• Avoids delay for offline processing.

MapReduce Data Flow

Digital twin state objects

Aggregated results

16

Also Enables Telemetry Filtering

Real-time digital twins can filter events for offline analysis in the data lake:

17

Avoids Network Bottlnecks

• State-centric approach distributes events across state objects.
• Avoids network bottleneck accessing remote data store from event pipeline.

• Network bottlenecks prevent scalable throughput.

18

Leverages In-Memory Computing

• State objects can be hosted within an in-memory data grid (IMDG).
• IMDG delivers event messages to state objects and runs message processor.
• IMDG can perform data-parallel analysis in place across state objects.

Data-parallel analysis

19

IMDG Delivers Fast, Scalable Performance

In-memory data grid:
• Processes event message

in 1-2 milliseconds.
• Performs typical data-

parallel analysis in
~1-5 seconds.

• Transparently scales
to handle 100,000+
digital twin instances.

20

Target Use Cases for Digital Twins

• Useful in applications which require fast response times and
situational awareness

• Benefit from real-time
aggregate analysis

• Examples:
• Health tracking
• Disaster recovery
• Security monitoring
• Fleet management
• Ecommerce

recommendations
• Fraud detection

Example: Telemetry and Feedback
from Wearable Devices

21

Real-Time Health Tracking

Digital twins analyze telemetry from
health-tracking devices to help
ensure safety (predict events):
• Digital twins receive periodic

messages with key metrics (heart
rate, blood oxygen, etc.).

• State objects track person’s health
history, medications, limitations,
recent medical events.

• Analysis algorithm can integrate
dynamic, aggregate results from
large populations.

22

Disaster Recovery

Digital twins analyze telemetry from
sensors to determine scope of an
incident in real time.
Example: intelligent fire alarm
system
• Analysis of sensor telemetry

indicates probable or impending
fire.

• Aggregate analysis of multiple
sensors indicates path & extent
of fire.

• Enables intelligent evacuation
strategy.

23

Security Monitoring

• Intrusion sensors analyze
telemetry to predict unauthorized
access at each location.

• Aggregate analysis of
perimeter sensors indicates
scope of threat.

• Enables focused, real-time
response to all critical locations.

24

Large Scale Fleet Tracking

• Real-time tracking for a
car/truck fleet
• 100K+ vehicles

• Immediately responds
to issues with individual
vehicles:
• Lost driver, engine

failure, etc.
• Detects & responds to

regional issues within
seconds
• Weather delays,

highway blockages
• Redirects drivers.

Fleet-Tracking Application

25

Ecommerce Recommendations

• Ecommerce site may have 100k+
shoppers, each generating a
clickstream.

• Digital twin for each shopper:
• Maintains a history of clicks, shopper’s

preferences, and purchasing history.
• Analyzes clicks to create new

recommendations in real time.

• Aggregate analysis:
• Determines collaborative shopping

behavior, basket statistics, etc.
• Enables targeted, real-time flash sales.

26

Building and Deploying Digital Twins

• Step 1: Build a digital twin
model and deploy to the
IMDG:

• Step 2: Connect the IMDG to
a message hub (e.g., Azure
IoT Hub, AWS IoT, Kafka,
REST, etc.):

27

Why Use Specific APIs for Digital Twins?

• Simplifies application design; avoids complexity of underlying IMDG
APIs, including:
• Explicitly managing and accessing state objects in the IMDG
• Orchestrating the staging of message-processing code across the IMDG
• Connecting digital twins to data sources
• Delivering messages to digital twins and back to data sources
• Ensuring highly available message handling

• Digital twin APIs and services allow the application to focus on:
• Defining message-processing code for each type of data source
• Defining the dynamic state information to be managed for each data source
• Describing periodic data-parallel analytics to be performed across all digital twins

of a given type

28

Digital Twin Builder APIs

• Application implements a message processor method:

ProcessMessage(stateObject, processingContext, messageList)

• Application defines state object to hold instance properties and optional
event lists.

• Processing context defines APIs for sending messages to data source or
to other twins.

• Message list contains set of messages that arrived since last call to
ProcessMessage.
• Hides latency by handling multiple messages at once.
• Enables single acknowledgment for a group of messages.

29

Deployment APIs

• Deploy model to IMDG:

builder = new ModelBuilder()
.AddDependency(“code.dll”)
.AddModel<stateObjectType,

messageProcessorType,
eventMessageType>()

.Build();

• Deploys model’s code to the IMDG.
• Starts message processing.
• Automatically creates a digital twin instance for each new data source id.

30

Connecting to a Message Hub

• Typical message hubs: Azure IoT Hub, AWS IoT, Kafka, REST
• A connector creates a message path to/from the IMDG and a hub:

connector = new XYZConnectionManager(name, connParameters);

• Authenticates connection to the message hub.
• Awaits messages from data sources.

• Uses multiple listeners if supported by the hub.

• Forwards messages to digital twin instances
or creates an instance for a new data source.

• Manages acknowledgments for high availability.

In-Memory Data Grid

31

Code Sample: Wind Turbine Digital Twin

Goal: Analyze temperature telemetry from a wind turbine.
• Digital twin state object tracks:

• Parameters: model, pre-maintenance period based on model, max. allowed temperature,
max. allowed over-temp duration (normal and pre-maintenance)

• Dynamic state: time to next maintenance, over-temp condition and its duration

• Message processor:
• Determines onset of and recovery from over-temp condition.
• Alerts at maximum allowed duration; logs incidents for time-windowing analysis.

Block Island Wind Farm

32

Sample State Object (C#)
[JsonObject]
public class WindTurbine : DigitalTwinBase
{

// physical characteristics:
public const string DigitalTwinModelType = "windturbine";
public WindTurbineModel TurbineModel { get; set; } = WindTurbineModel.Model7331;
public DateTime NextMaintDate { get; set; } = new DateTime().AddMonths(36);
public const int MaxAllowedTemp = 100; // in Celsius
public TimeSpan MaxTimeOverTempAllowed = TimeSpan.FromMinutes(10);
public TimeSpan MaxTimeOverTempAllowedPreMaint = TimeSpan.FromMinutes(2);

// dynamic state variables:
public bool TrackingOverTemp { get; set; }
public DateTime OverTempStartTime { get; set; }
public int NumberMsgsWithOverTemp { get; set; }

// list of incidents and alerts:
public List<Incident> IncidentList { get; } = new List<Incident>();

}

33

Sample Message Processor (Outer Loop)
public override ProcessingResult ProcessMessages(ProcessingContext context,

WindTurbine dt, IEnumerable<DeviceTelemetry> newMessages)
{

var result = ProcessingResult.NoUpdate;

// determine if we are in the pre-maintenance period for this wind turbine model:
var preMaintTimePeriod = _preMaintPeriod[dt.TurbineModel];
bool isInPreMaintPeriod = ((dt.NextMaintDate

- DateTime.UtcNow) < preMaintTimePeriod) ? true : false;

// process incoming messages to look for over-temp condition:
foreach (var msg in newMessages) {

// if message reports a high temp indication, track it:
if (msg.Temp > WindTurbine.MaxAllowedTemp)

<track over-temp condition>
else if (dt.TrackingOverTemp)

<resolve over-temp condition>
}
return result;}

34

Track/Resolve Over-temp Condition
// track over-temp condition:
{dt.NumberMsgsWithOverTemp++;

if (!dt.TrackingOverTemp) {
dt.TrackingOverTemp = true; dt.OverTempStartTime = DateTime.UtcNow;
<add a notification to the incident list> }

TimeSpan duration = DateTime.UtcNow - dt.OverTempStartTime;

// if we have exceeded the max allowed duration for an over-temp, send an alert:
if (duration > dt.MaxTimeOverTempAllowed ||

(isInPreMaintPeriod && duration > dt.MaxTimeOverTempAllowedPreMaint)) {
var alert = new Alert(); <fill out the alert message>;
context.SendToDataSource(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(alert)));
<add a notification to the incident list> }}

// resolve the condition and reset our state:
{dt.TrackingOverTemp = false; dt.NumberMsgsWithOverTemp = 0;
<add a notification to the incident list> }

35

Deploy the Model and Connect to a Hub

• Deploy the wind turbine model:
ExecutionEnvironmentBuilder builder = new ExecutionEnvironmentBuilder()

.AddDependency(@"WindTurbine.dll")

.AddDigitalTwin<WindTurbine, WindTurbineMessageProcessor,
DeviceTelemetry>(WindTurbine.DigitalTwinModelType);

• Connect to Azure IoT Hub:

EventListenerManager.StartAzureIoTHubConnector(
eventHubName : _eventHubName,
eventHubConnectionString : _eventHubConnectionString,
eventHubEventsEndpoint : _eventHubEventsEndpoint,
storageConnectionString : _storageConnectionString,
consumerGroupName : "");

36

How an IMDG Stores Data & Runs Code

IMDG transparently scales data
storage and method execution
across multiple servers:
• Stores serialized objects in a

Data Grid.
• Runs methods in an Invocation

Grid.
• Each IG Worker process:

• Hosts a language-specific runtime.
• Processes requests and accesses

objects from its co-located Grid
Service process.

Data Grid

Invocation Grid

Server 1 Server 2 Server 3

37

How an IMDG Runs Digital Twin Models

• Digital twin instances are hosted
as objects in the Data Grid.

• Digital twin models run in an IG
called the Worker Grid.

• Connectors run in an IG called
the Connector Grid.

• Connectors invoke message
processor on the server hosting
the device’s instance object.
• Steers messages to object by id.
• This minimizes network overhead. In-Memory Data Grid

Scale

Message Hub

38

Deploying a Digital Twin to the Cloud

Preview of a UI for a
cloud service that hosts
digital twins:
• Model is first created

using APIs.
• UI uploads code

from a resource file.
• UI selects language

runtime, such as
Java, C#,
JavaScript.

39

Deploying a Connector to the Cloud

Connectors can be
created by
specifying the hub
type and connection
parameters:

40

Managing Digital Twin Models in the Cloud

Each model can be
independently
managed to check
status and restart as
necessary:

41

Examining a Digital Twin Instance

The properties for each
digital twin instance
(i.e., for each device)
can be examined:

42

Collecting Aggregate Statistics

“Widgets” can be
created for digital
twin models to
display aggregate
statistics:
• Performs periodic

MapReduce on
selected state
properties.

• Runs every few
seconds.

43

Takeaways

• Real-time stream-processing is challenging.
• Traditional approach (Lambda Architecture) limits real-time processing

and cannot perform aggregate analysis in real time.
• Real-time digital twins offer a breakthrough:

• Deeper introspection in real time
• Simplified application design
• Fast, scalable performance

• Enable vastly improved
situational awareness and
response.

• In-memory data grid provides a
fast, scalable execution platform.

